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Overview

1. Project Overview
This section provides an overview of the Static Program Analyzer (SPA) architecture and

highlights unique Software Engineering (SWE) practices adopted.

1.1 Static Program Analyzer

Figure 1.1: Static Program Analyzer Architecture Diagram

The architecture of the Static Program Analyzer (SPA) does not deviate significantly from the

version in the lectures. It consists of the Source Processor (SP), Program Knowledge Base

(PKB), and the Query Processing Subsystem (QPS). The following subsections describe each

SPA sub-component.
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1.1.1 Source Processor

The SP parses the input SIMPLE program and inserts design abstractions into the PKB. The SP

uses a Recursive Descent Parser to validate and parse the SIMPLE program. The Shunting

Yard algorithm is used to convert infix expressions into postfix notation. The algorithm is also

required when querying for pattern clauses.

1.1.2 Program Knowledge Base

The PKB processes the information received from SP, validates and stores it, and exposes a

set of APIs for the PQL system to perform queries on. The PKB stores information in a set of

tables and stores the Abstract Syntax Tree (AST). Two facade classes are used to insert and

extract information from this set of tables. They are the PKB Inserter Facade and PKB

Extractor Facade respectively. A data structure (BiMap) that provides O(1) access via integer

indexes and keys of any type is also implemented for faster queries. Control flow graphs

(CFGs) are also stored here.

1.1.3 Query Processing Subsystem

The QPS parses PQL queries and calls the corresponding PKB APIs to retrieve the relevant

information. The QPS consists of the Query PreProcessor, Query Optimizer and Query

Evaluator. The Query PreProcessor makes use of the table-driven technique to verify if the

arguments in the PQL clause are valid, instead of hardcoding the validation logic. The Query

Optimizer sorts the Query Nodes to reduce the time taken to perform queries. The Query

Evaluator finally takes in the sorted Query Nodes and evaluates them. A Query Result Table

data structure is also implemented to store rows of tuples and supports equi-joins and cross

products for multi-clause queries. The Query Result Table is used when the Query Evaluator

calls the PKB APIs.

1.2 Software Engineering Practices
In this project, Cpplint was used to enforce Google’s C++ code style guide (with slight

modifications).

GitHub actions were used to support continuous integration. It runs an automated build on

our target OS platform (Windows) and performs unit testing, integration testing, system

testing, and linting on branch pushes or pull requests.

A logger was also implemented as a singleton object in the SPA codebase, enabling it to be

called anywhere in the source code.

Weekly sprints were also conducted and GitHub projects were used to track issues.

Unit, integration, and system testing were conducted extensively for quality assurance.

Python scripts were written to automate the creation and execution of source programs and

system tests. Load and stress testing were conducted as extensions to fulfill SPA

non-functional requirements.
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Part 1 – Technical report
2 Source Processor

2.1 Overview
The SP is responsible for the parsing and validation of all incoming SIMPLE source code. It

tokenizes the source and validates tokens to ensure that they abide by the grammatical rules

specified. Once validation is successful, important source information is then inserted into

the PKB via an inserter facade on the fly.

2.2 SP Architecture
To handle design issues related to source evaluation, the SP is decomposed into 4

sub-components:

1. Token (Token, TokenStore)

2. Source Tokenizer (Lexer)

3. Source Parser (Conditional Expression and Normal Parser)

4. Expression Converter

The following architecture diagram showcases the relationships between the

sub-components:

Figure 2.1: SP Architecture Diagram

The decision for the diagram shown in Figure 2.1 is justified in the following subsections.

2.2.1 Design Decision: Aggregation of Conditional and Normal Expression Parsers

Approach 1:

Combining the Parsers for Conditional Expressions and Normal Queries as a single Parser.
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Advantage:

● Less code duplication, as conditional expressions are similarly decomposed to

factors and terms, just like normal expressions.

Disadvantage:

● Less separation of concerns, as there are significant differences between the

grammar syntax for conditional expressions and normal expressions (i.e.

parenthesis handling).

● Lower extensibility, as any modifications to the parsing of conditional expressions

will require the parsing of normal expressions to be modified as well.

Approach 2:

Splitting the parsing of conditional expressions and normal expressions into two separate

Parsers. Conditional expressions will be handled separately.

Advantage:

● Higher separation of concerns as different types of expressions are handled by

their respective Parsers in charge.

● More extensible, as changes to the way conditional expressions are parsed can be

implemented without affecting the parsing of normal expressions.

Disadvantage:

Greater amount of code duplication, violating the DRY principle. (Do not repeat)

Justification on Final Choice (Approach 2):

Approach 2 was implemented as code duplication is not a significant concern. Conditional

expression parsing and normal expression parsing are significantly different and require

different data structures to handle. Separation of concerns is more important as it makes

testing and future modifications straightforward.

2.2.2 Design Decision: Inserting Objects into the PKB via a Facade or Directly

Approach 1:

Directly inserting the objects into the PKB

Advantage:

● Less testing code due to the absence of the additional facade component.

Disadvantage:

● Higher coupling, since the PKB and the SP will be directly interacting with each

other. Also, as the insertion of objects can be highly complex due to the need to
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determine AST information, there might be significant pre-processing that is

exposed to the SP, which should not be its concern.

Approach 2:

Delegating the responsibility of inserting objects into the PKB to a PKB Inserter Facade

class, and simply interacting with the facade.

Advantage:

● Separation of concerns, as unnecessary details of the PKB are hidden from the

Source Processor.

● Ease of development as the facade class exposes pre-defined APIs that the SP can

call, without having to wait for the PKB to be fully functional.

● Looser coupling, due to an additional level of indirection.

Disadvantage:

● Larger amount of test code has to be written due to the presence of an additional

facade component. This might slow down the development process.

Justification on Final Choice (Approach 2):

It would make the most sense to rely on the facade to hide complex validation and

pre-computation processes that the PKB goes through in order to construct the AST. In this

case, reducing coupling was the primary concern, since future implementations of the SPA

might change, and it is critical to be able to make modifications easily. Higher extensibility

due to lower coupling was therefore valued over the need for additional testing

requirements.

Finally, the functionalities of tokenizing, parsing and conversion are separated into

independent sub-components to increase cohesion, since they work on the same issue. This

improves the understandability, maintainability and reusability of the components created.

2.3 SP Parsing and Validation
In this section, the design for the parsing and validation of SIMPLE programs will be

discussed. The following class diagram provides an overview of the interaction between the

SP subcomponents:
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Figure 2.2: SP Parser Class Diagram

Individual components and their descriptions are briefly discussed below. Specific

implementation details are outlined in the respective sections of the components.

Component Description

Token Representation of the final output of the tokenizer. The SIMPLE

program will be converted from characters to respective tokens. Each

token will carry a type (Token Type), and a value string.

TokenStore Serves as a general store for different tokens.

TokenType Enum Stores the different types of tokens that can be present in any source.

Lexer / Tokenizer Reads through the source string character by character to generate

tokens that can be validated and processed by the Parsers.

Parser Calls the Lexer to retrieve tokens and validates the syntax based on

SPA grammar rules. Also adds important object information to the

PKB.
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CondExprParser Has similar responsibility as the Parser but applied on conditional

expressions only.

ExprConverter Converts infix expressions to postfix expressions.

Figure 2.3: Responsibilities of each SP Component

2.3.1 Tokens

The SIMPLE program is input from the autotester as a string, and characters are converted to

tokens by the tokenizer. The following two approaches were considered.

Approach 1: Parsing SIMPLE program into characters instead of token types

Advantages:

● Code development will be easier since the source string can be directly parsed and

validated.

● Less testing, due to the absence of the token classes.

Disadvantages:

● Less abstraction, as the source file is handled directly with characters.

● Less extendible, since there might be new or additional token types added in the

future that would require manual modification of functionality, instead of simply

adding a new token type enumeration member.

● Less separation of concerns between lexical and grammar validation, as the Parser

will have to deal with invalid characters while ensuring proper adherence to

grammar rules.

Approach 2: Parsing SIMPLE program into predefined token types

Advantages:

● Responsibilities of lexical validation can be separated from grammar validation.

● Easier development, since the Lexer and Parser can be developed in parallel.

Disadvantages:

● More unit testing is required to ensure the proper functioning of the Lexer and

Parser, which might slow down the development process.

Justification on Final Choice (Approach 2):

Approach 2 is chosen because it allows a faster development process, discounting unit

tests. More importantly, responsibilities are well-defined between the Lexer and Parser,

and tokens are treated as an abstraction of the entire original source. Hence, the Parser

does not need to be concerned about lexical errors, and can just focus on ensuring that
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the source abides by the SIMPLE grammar rules.

Additionally, each token stores a token type, as well as its associated value. The various

token types used are also outlined below:

Keyword Token Types kProcedure, kRead, kPrint, kCall, kWhile, kIf, kThen, kElse

Operator Token Types kEquals, kNot, kAnd, kOr, kGreater, kGreaterOrEqual, kLesser,

kLesserOrEqual, kEquality, kNotEquals, kAdd, kSubtract,

kMult, kDiv, kMod

Names kName

Constants kInteger

Brackets kLParen, kRParen, kLBrac, kRBrac

End of Line, End of File kEOL, kEOF

Figure 2.4: Token Types Table

While the keyword token types exist, they are used for comparison purposes only. However,

keywords such as while, if, else, print are recognized as kName tokens throughout the entire

source. The Parser then handles the situation where a keyword token is expected and makes

a comparison of its value to the value of the expected keyword token type. It is not possible

to parse all keywords as keyword tokens because keywords can also be used as variable

names for assignment statements, and it would be challenging to distinguish between

variable names and keywords if the Lexer distinguishes them at the tokenizing stage.

To illustrate the tokenization step better, an example source program is presented below,

together with the tokens that are generated. Figure 2.5 gives an example SIMPLE program to

be tokenized.

Figure 2.5: Example SIMPLE Program for Tokenization
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The following is a tokenized representation of the SIMPLE program.

SIMPLE program string Token Type Token Value

procedure kName “procedure”

computeAverage kName “computeAverage”

{ kLBrac “{“

read kName “read”

num1 kName “num1”

; kEOL “;”

; kRBrac “;”

Figure 2.6: Tokens Generated from Example Source

There are a total of 7 tokens that are generated from the example source, and each token is

encapsulated by its own unique type and value. These tokens also represent the final output

of the lexer.

2.3.2 Lexer and Tokenizer

This subsection describes how tokens are generated. The following is an abridged sequence

diagram showing some of the interactions that occur inside of the Lexer. Not all interactions

are shown as there are too many alternatives that follow a similar approach.
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Figure 2.7: SIMPLE Source Tokenization Sequence Diagram
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1. The GetNextToken() method of the Lexer is a public method that can be called by the

Parser when it intends to retrieve the next token of the source. The Lexer keeps track

of the current position with position and current position pointers.

2. When the GetNextToken() method is called, the Lexer defaults handling to different

sub-routines depending on the character that is detected in the current position. For

simpler characters that do not require any further checks, the Lexer simply calls the

CreateToken() function to wrap the character in its respective token type to be

returned to the calling Parser.

3. Some characters would require more handling than others. For example, when an

equal sign is detected, the HandleEqual() method will be called, which in turn calls

HandleEqualSign() to determine if an equals (“=”) token should be created, or the

equality (“==”) token. This is where the Peek() function of the Lexer comes in handy.

4. The Peek() function of the Lexer allows the Lexer to be able to determine the next

character of the source, without shifting the current position index. If the next

character in the source is another equals, then an equality token is returned instead

of an equals token.

2.3.3 Parser

The Source Parser makes use of a recursive-descent algorithm. Parsing is also predictive in

nature due to the PeekNextToken() functionality that is implemented in the source tokenizer.

This enables the ability to uncover the next token without adjusting the current position of

the tokenizer, and intelligently choose the next parse method to call. The Parser also makes

use of the SIMPLE grammar, and a flowchart is shown below to illustrate the flow of the

recursive algorithm.
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Figure 2.8: SIMPLE Source Recursive Descent Parsing Flowchart

2.3.4 Key APIs: SP Parsing

This section details critical APIs necessary for the functioning of the Source Parser. Recursive

parse methods are not included, as they are part of the Recursive Descent algorithm.

TOKEN Eat(TOKEN_TYPE type, BOOL is_keyword, TOKEN_TYPE expected_keyword_type)

Enables the Parser to “consume” the next token as tokenized by the Lexer, and ensure that

it is of the expected token type. Otherwise, an exception will be thrown to indicate failed

source parsing (due to incompatibility with the SPA grammar rules)

TOKEN EatAny(TOKEN_TYPE_LIST expected_types)

Carries out similar functionality as Eat, but allows multiple different token types to be

expected. They can be passed inside of a vector. This makes checking for different

operator types much more convenient, instead of using multiple if else blocks. This is

especially useful for the evaluation of expressions where different operator types can be

expected.
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TOKEN_DEQUE EatUntil(TOKEN_TYPE type)

Allows the Parser to consume tokens until a token of the same type as the expected token

type is encountered. Returns the whole list of tokens consumed in a deque. This is

especially useful for the parsing of conditional expressions, since the entire conditional

expression needs to be extracted and passed over to the CondExprParser.

VOID AddExprToPkb(TOKEN_DEQUE expr_tokens)

Inserts important information about expressions into the PKB Inserter Facade class, for

processing by the PKB. Expressions are passed in as a deque of tokens, which have already

been converted to the postfix form by the expression converter class.

2.3.5 Conditional Expression Parser

Figure 2.9: Conditional Expression Parser Flow Diagram

A flow diagram is shown above to illustrate how the conditional expression Parser functions.

Details are left out in terms of what tokens are consumed. Conditional expressions cannot
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be validated in the same manner as normal expressions, since the grammar rules used for

both are different. It is also not possible to validate the differences between a conditional

expression that starts with a left parenthesis from a normal expression that starts with a left

parenthesis. However, conditional expressions only appear in the control blocks of if and

while loops, and the responsibility of validating the conditional expressions can be delegated

to a Conditional Expression Parser.

The Conditional Expression Parser differentiates between two main types of parsing

possibilities:

1. Relative Expressions

2. Recursive Conditional Expressions

If it is a relative expression, then there are no kAnd or kOr tokens and the ParseRelExpr()

method is then called to process the relative expression. Otherwise, the Parser will

recursively call the ParseCondExpr() method. The idea is to recursively process both the left

and right sides separately while ensuring that the parentheses used are valid at the end of

parsing. The kAnd or kOr tokens are used to separate both left and right hand sides.

2.3.6 Expression Converter

For pattern expressions, it is important to be able to parse them in postfix form, rather than

the infix form that is supplied in the source. Hence, this responsibility is delegated to an

Expression Converter class, which makes use of an adapted Shunting Yard implementation to

do the conversion. Details will not be included, since it is a relatively well-known algorithm

that makes use of a deque and a stack.

The expression converter takes in an unordered map of operator precedences, which allows

the converter to recognize the precedences of any operator supplied. This makes the

converter extensible for any future modifications, additions of operators, or the changing of

precedences. The operator precedence map used for the SPA project is shown below, and

this map is passed as a parameter during the converter’s initialization.

Key Operator Precedence

Multiplication 2

Division 2

Modulo 2

Addition 1

Subtraction 1

Figure 2.10: Operator Precedence Map
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In order for the Expression Converter to be extensible and work with the PQL component as

well, an adaptor method GetExprToken() is included to convert existing token types from the

token store to types that are specific to only the expression converter. The following types

are explicitly recognized by the expression converter:

● kOperator (Operator types)

● kNameConstant (Variable names and constant values)

● kLParen (Left parenthesis)

● kRParen (Right parenthesis)

● kNone (Does not match any token)

2.4 Interaction with PKB Inserter Facade

Figure 2.11: Parser-PKB Inserter Facade Interaction Sequence Diagram

The sequence diagram above illustrates the interaction between the Parser and the PKB

Inserter Facade. Not all parse methods require the extraction of design information. For

example, ParseProgram() does not require any extraction of design information, so the

Parser does not call any of the APIs that the facade provides. The facade often returns an

index, which uniquely identifies the stored object. This is also used as the statement number

/ procedure index in the program. An outline is provided below to indicate the parse

methods where extraction of important design information takes place.

Parse Method Design Information Extracted (API calls to PKB Inserter Facade)

Parse Process()
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At the end of parsing, the Parser calls the Process() method of the

facade to process the inserted parameters.

ParseProcedure InsertProcedure()

The following parameters are taken in to the above methods:

● Procedure Name: name of procedure to be inserted

ParseRead

ParseCall

ParsePrint

InsertReadStmt()

InsertPrintStmt()

InsertCallStmt()

The following parameters are taken in to the above methods:

● Name: variable name / called procedure name

● Procedure Index: the procedure index where this statement

appears

● Parent Statement: the parent of this statement

● Block type: the type of block where this statement is

contained in (i.e. while block, if block, else block)

These methods then return a statement index, which can be used to

track statement flows throughout parsing.

ParseAssign InsertAssignStmt()

The following parameters are taken in:

● Variable: the left hand side variable name to be assigned a

value

● Procedure Index: the procedure index where this statement

appears

● Parent Statement: the parent of this statement

● Block type: the type of block where this statement is

contained in (i.e. while block, if block, else block)

ParseIf

ParseWhile

InsertIfStmt()

InsertWhileStmt()

The following parameters are taken in:

● Procedure Index: the procedure index where this statement

appears

● Parent Statement: the parent of this statement
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● Block type: the type of block where this statement is

contained in (i.e. while block, if block, else block)

ParseFactor

(CondExprParser)

InsertUsingVar()

InsertConstant()

The following parameters are taken in:

● Name/Value: indicates the name of the variable or the value

of the constant

● Statement number: the statement number where this

variable/constant appears

● Statement type: the type of the statement

AddExprToPkb

(Parser)

InsertUsingVar()

InsertConstant()

InsertOperator()

The parameters for the InsertConstant() and InsertOperator() are the

same as the ones for the conditional expression Parser. The

parameters for the InsertOperator() function is outlined below:

● Op Value: indicates the operator value (i.e. “+”)

● Statement number: the statement number where this

operator appears

Figure 2.12: Parse methods for extraction of design information

2.5 Design Decision: Semantic Validation of SIMPLE Program

The semantic validation of a SIMPLE program consists of checking for cyclic dependencies

between procedures and if all call statements call procedures that exist. The following

discusses if this semantic validation should be performed in an intermediary data structure

in the SP or in the PKB Inserter Facade.

Approach 1: Semantic validation in the PKB Inserter Facade

Advantages:

● Easier to develop and write code for, due to reduced complexity from having an

additional component handle the validation of design information.

Disadvantages:

● Less separation of concerns in the PKB, since validation and data insertion is

performed in a single component
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Approach 2: Semantic validation in an intermediary data structure in the SP

Advantages:

● Better separation of concerns as the validation of design information is separated

from insertion.

Disadvantages:

● More implementation effort as an additional component has to be designed for

this validation.

● Slightly more runtime overhead as this data structure has to be instantiated and

validation has to be performed on it.

Justification on Final Choice (Approach 1):

The time complexity of both approaches are relatively similar, O(N), but from an

implementation perspective, it is much more straightforward to handle insertion of design

information together with validation. Furthermore, validation logic is simple and could be

easily separated within the insertion logic in the PKB Inserter Facade. Hence, approach 1

was chosen.

The actual semantic validation of the SIMPLE program is discussed in subsection 3.5.4.
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3 Program Knowledge Base
In this section, the design and APIs of the PKB will be discussed.

3.1 Overview

Figure 3.1: PKB Component Diagram

The PKB is made up of the AST and the following tables: Variable Table, Constant Table,

Procedure Table, Statement Table. To insert information into the AST and tables, an Inserter

Facade class is used. It validates the information to be stored as well and provides a set of

APIs to SP. To extract information from the AST and tables, a separate Extractor Facade class

is used to provide the APIs for the QPS. The utilization of these facade classes helps increase

cohesion and decrease coupling, as the responsibilities of data insertion and extraction are

separated.

3.2 AST
This section elaborates on the design of the AST.
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3.2.1 AST Design

The AST is implemented as a vector of Stmt objects. The index of this vector corresponds to

the statement number of the object, offset by 1.

Figure 3.2: Statement Object Class Diagram

The figure above describes how the Stmt objects are implemented. Briefly, each type of

statement inherits from the parent abstract class Stmt. Another abstract class, ParentStmt

inherits from the main Stmt object class. Only IfStmt and WhileStmt inherit from

ParentStmt. A StmtType enumeration is also used to identify the type of each Stmt object.

Each Stmt object also stores the index of variables that are being used or modified, to

facilitate the evaluation of Uses or Modifies queries.

AssignStmts also consist of an ExprTree attribute, which facilitates in evaluating PQL pattern

queries. This ExprTree attribute contains a vector of operators, variables and constants of

the assignment statement in postfix order. For example, an assignment statement with right

hand side expression: “x + y * 3” is stored as “x”, “y”, “3”, “*”, “+” in the ExprTree.

20



3.2.2 Design Decision: AST Data Structure

Approach 1: Storing the AST as a vector of Stmt objects

Advantages:

● Easy to implement, as the AST is just a vector.

● Efficient queries in O(1) time, as access to Stmt objects in the AST just requires

access to the vector.

Disadvantages:

● May not be extensible when more queries are added (although this is not the case

for Advanced SPA). This may occur as the vector does not have a tree

representation of the SIMPLE program. It may not be possible to evaluate the

expressions of assignment statements or execute while loops.

● AssignStmt stores an ExprTree object as an additional attribute, which incurs

additional memory overhead.

Approach 2: Storing the AST as a graph

Advantages:

● Stores most information of the SIMPLE program, which makes it extensible.

● Does not incur additional memory overhead, as expression trees are embedded as

part of the AST.

Disadvantages:

● Difficult to implement, as many types of nodes need to be considered

● Queries may take Ω(N) time, as querying for a statement requires traversing across

the entire AST.

Justification on Final Choice (Approach 1):

As runtime efficiency is a requirement, the AST is implemented as a vector of Stmt objects.

Furthermore, given time constraints, it was also less feasible to implement the AST as a

graph. Should the need to store additional information on the SIMPLE program arise,

additional data structures can be used to supplement the vector implementation.

3.3 PKB Tables
This section elaborates on the design of the tables used in the PKB.
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3.3.1 PKB Table Design

PKB tables are implemented using a BiMap of table records. Table records refer to a class

that encapsulates the data of each row in the table. The BiMap is a data structure with the

following properties:

● O(1) element access via integer indexes

● O(1) element access via a key of any type

● Supports ordering via integer indexes

The BiMap is implemented using a vector and a hashmap. The vector stores all the elements

in its index order. The hashmap stores keys of any type and maps it to the index of the

vector. The following provides an abstract representation of the BiMap:

Figure 3.3: BiMap Abstract Representation

3.3.2 Design Decision: Table Data Structure

Approach 1: Implementing tables with the BiMap

Advantages:

● Efficient access time to table records via indexes and keys

● Provides indexing, which reduces memory used in other tables, as the index, rather

than the key (typically a string) can be used

● Provides ordering to the tables, allowing tests to be more easily written

Disadvantages:

● The BiMap data structure is implemented with a vector and hashmap, which incurs

more memory overhead
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Approach 2: Implementing tables as a hashmap of keys of any type to Table records

Advantages:

● Less memory overhead

● Efficient access to table records via keys

Disadvantages:

● Does not provide indexing. As such, other tables have to store the key in their table

records. More memory is consumed in the implementation of tables, especially if

the keys are big. For example, if Variable Table were to store only its key (a variable

name string) other tables such as Procedure Table would have to store this key,

instead of an integer index.

Justification on Final Choice (Approach 1):

As keys could become arbitrarily large, such as variable names, it is important that these

are not duplicated across tables. Otherwise, the memory consumption would be too high.

Hence, using a data structure that provides indexing and efficient access was the most

important factor in deciding on the design of the tables.

The following sections describe the design of each table and provide an accompanying

example instance. The key of these tables are marked with ‘[KEY]’ as well.

3.3.3 Variable Table

Index Variable

Name [KEY]

Statements

using

variable

Statements

modifying

variable

Procedures

using

variable

Procedures

modifying

variable

0 “x” 3, 4, 6 7 NONE 0, 1

1 “y” 3, 5 6, 8 NONE 1

2 “counter” 8 NONE 0, 1 NONE

Figure 3.4: Variable Table Example Instance

Variable tables store the following:

● Variable name: string

● Statement that use the variable: unordered set of statement indexes

● Statement that modify the variable: unordered set of statement indexes

● Procedures that use the variable: unordered set of procedure indexes

● Procedures that modify the variable: unordered set of procedure indexes
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Unordered sets are used to provide efficient access to Use and Modify queries, when

searching for statement numbers or procedures that use or modify a certain variable.

3.3.4 Constant Table

Index Constant [KEY]

0 1

1 100

2 11

Figure 3.5: Variable Table Example Instance

Constant tables store the following:

● Constant: integer

Constants are stored as integers, as queries such as s.stmt# = constant.value could be

queried.

3.3.5 Procedure Table

Index Proc

Name

[KEY]

Child

Statement

Numbers

Used Vars Modified Vars Call

Procs

Callee

Procs

Control

Flow

Graph

0 “main” 1, 2, 3, 4 0, 1, 2, 3,

4, 5, 6, 7,

8, 10

0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10
1 NONE main_cfg

1 “foo” 6, 7, 8 0, 2, 3, 4,

5, 6, 7, 8,

10

2, 3, 4, 7, 8, 9,

10
2 0 foo_cfg

2 “bar” 9, 10, 11,

12, 13

0, 2, 5, 8,

10

2, 3, 4, 7, 10 NONE 1 bar_cfg

Figure 3.6: Procedure Table Example Instance

Procedure tables store the following:

● Procedure name: string

● Direct child statement numbers: vector of statement indexes

● Variables that are used: unordered set of variable indexes

● Variables that are modified: unordered set of variable indexes
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● Call procedures: unordered set of procedure indexes

● Callee procedures: unordered set of procedure indexes

● Call Star procedures: unordered set of procedure indexes

● Callee Star procedures: unordered set of procedure indexes

● CFG, which will be discussed in section 3.4

The child statements are stored in ascending order. When querying for Follows or Follows*

relations, binary search can be used to search for particular statement indexes directly.

Unordered sets are implemented for variables used and modified by the statement to

provide efficient access when querying for Uses or Modifies relationships. Call and Callee

procedures, as with their star variants, are stored for O(1) Calls and Call* queries. Note that

Call Star and Callee Star procedure columns are omitted in Figure 3.5 due to space

constraints.

3.3.6 Statement Table

Statement Type Statement numbers

Read 11, 13

Print 6, 14

Assign 1, 4, 7, 8

If 2, 10

While 3

Call 5

Figure 3.7: Statement Table Example Instance

Statement table stores each type of statement type as a vector of statement indexes. This is

also the only table in the PKB that does not use a BiMap, as the types of statements are

fixed. The statement table does not support any types of queries directly. Instead, it

categorizes each statement index into their statement type. As such, when queries that

involve certain statement types are executed, there is no need to iterate through all

statement indexes and check if they are of the required type. The statement table can be

accessed to provide all statement numbers of the required type.

Since the statement numbers retrieved will be iterated over, and that searches on statement

indexes will not be performed in the statement table, a vector is used to store the statement

indexes.
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3.4 CFG
This section discusses the design of the CFG.

3.4.1 CFG Design

The CFG is implemented with five different types of nodes:

● NormalNode (for assign, read, print, call statements)

● IfNode

● WhileNode

● TerminalNode (for the start and end of the CFG)

● DummyNode (to connect the two IfNode branches)

Each node stores the statement number it represents. This is similar to the CFG

implementation presented in lectures. The main differences are:

● each statement belongs to each own node,

● branches of if nodes are always connected by DummyNodes,

● TerminalNodes are used to demarcate the start and end of the CFG,

● each node knows about the next and previous node(s)

The additional nodes: TerminalNode and DummyNode, were implemented for easier CFG

creation and traversal. Each node also knows about its next and previous nodes to facilitate

queries such as Next(5, _) and Next(_, 5). Furthermore, the CFG is indexed with a BiMap to

allow for O(1) access to specific required nodes. The following is an example instance of a

CFG:
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Figure 3.8: CFG Example Instance

Note that Node 3 is an IfNode, Node 5 is a WhileNode. The rest of the nodes are either

NormalNodes, TerminalNodes or DummyNodes.

3.4.2 CFG Traversal Strategy

Breadth first search (BFS) was implemented to traverse the CFG, to both get the next and

previous nodes. The following activity diagram shows how the next immediate nodes are

obtained during an iteration of BFS.
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Figure 3.9: CFG BFS Getting Next Nodes

To avoid appending TerminalNodes or DummyNodes to the result, it is necessary to check

and handle these two cases in each iteration. Additionally, getting all the next nodes of

dummy nodes would allow the algorithm to function correctly. Otherwise, the BFS traversal

will always terminate upon reaching a DummyNode.

3.4.3 Design Decision: CFG Traversal

Approach 1: Implementing BFS

Advantages:

● Less memory consumed, as only nodes in the current level are stored in the queue

● As BFS traverses the CFG level by level, it ensures that all sequential nodes visited

can be cached

Disadvantages:

● Slightly slower run time, since each node in each level is visited

Approach 2: Implementing DFS

Advantages:
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● Slightly faster run time, as once a specific node in the current path is reached, the

result can be returned immediately

Disadvantages:

● More memory consumed, as a stack of nodes has to be kept in memory for each

branch visited. The longer the SIMPLE program, the bigger the memory used.

Justification on Final Choice (Approach 1):

The assumption that the amount of nesting of if statements in the SIMPLE program is

made. If statements are the only case where the CFG increases in width. Hence, it is

expected that CFGs would usually be deeper. This means that at each iteration of BFS, the

number of nodes stored in the queue will be kept to a minimum. Also, the runtime of BFS

would be comparable to that of DFS as the number of nodes in a level would be small.

3.5 PKB Inserter Facade
This section explains how information is inserted into the PKB Inserter Facade. It also

discusses its processing and validation logic.

3.5.1 PKB Data Insertion

The PKB Inserter Facade contains the following as attributes:

● pointers to all PKB tables

● pointer to the AST

● call statement cache

The call statement cache stores the procedures that call statements call and validates that all

these procedures exist. It is a map of call statement numbers to the procedure name it calls.

This is further elaborated on in section 3.5.4.

As mentioned above, the SP passes information regarding procedures and statements into

the Inserter Facade and only provides basic information such as statement numbers,

variable names, procedure names, etc. The Inserter Facade then inserts the relevant

information into the PKB tables and AST. The following figure provides an overview on how

these information are stored.

Design Entity SP parameters Affected PKB tables and/or AST

Procedure ● procedure name ● procedure table creates a new entry with

this procedure name

Constant ● constant name

● statement number

● constant table upserts an entry with this

constant
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● statement type ● if the statement type is of assignment

type, the constant is appended to the

ExprTree of the associated AssignStmt

Read Statement ● variable name ● variable table upserts an entry with this

variable

● ast creates a new ReadStmt object

● procedure table updates that this

variable is being modified

Print Statement ● variable name ● variable table upserts an entry with this

variable

● ast creates a new PrintStmt object

● procedure table updates that this

variable is being used

Call Statement ● call procedure

name

● ast creates a new CallStmt object

● call statement cache is updated to store

this call procedure name

While

Statement

- ● ast creates a new WhileStmt object

If Statement - ● ast creates a new IfStmt object

Assign

Statement

● variable name ● ast creates a new AssignStmt object

● procedure table indicates that the

variable is being modified

Used Variables ● variable name

● statement number

● statement type

● variable table upserts a new entry with

this variable

● procedure table updates that this

variable is being used

● if statement type is of if or while type,

the variable is inserted into the control

variables of the associated Stmt

● if statement type is of assignment type,

the variable is appended into the

ExprTree of the associated AssignStmt

Operators ● operator string

● statement number

● operators only occur in assignment

statements and are thus inserted into

their ExprTree
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Figure 3.10: Storage of Information from SP

For brevity, note that the parent procedure index, parent statement number, and parent

block type are omitted from this figure, as the insertion of all statements require these three

arguments. The purpose of these information are as follows:

● parent procedure index: statement number is appended to the child procedure

statement list of this parent procedure

● parent statement number: statement number is appended to the child statement list

of this if or while statement

● parent block type: indicates if the child statement list is to be inserted into a while,

if-then or if-else block

Furthermore, note that only variables that are used have their own API for insertion.

Variables that are modified are found as a singular entity in read or assignment statements.

They can thus be inserted in the read or assignment statement api calls. Also, constants,

operators and used variables are inserted in postfix order into the expression tree object of

assignment statements via the Shunting Yard algorithm described in section 2.3.6.

The following subsection shows how the SP passes information of a statement into the PKB

Inserter Facade and how the Inserter Facade stores it in the PKB tables.

31



3.5.2 Interaction between SP and PKB

Figure 3.11: SP and PKB Interaction Sequence Diagram
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The process starts at the SP. The SP parses a read statement and calls the InsertReadStmt.

This is the entry point into the PKB from the SP. All interactions between the SP and the PKB

are always done through this inserter facade class. As such, there will never be any

interaction between the SP and the tables in the PKB. The PKB Inserter Facade will then call

the following methods in subsection 3.5.3 to correctly insert all information of the read

statement into the various tables in the PKB.

3.5.3 Key APIs: SP and PKB Interaction

This section details the key APIs brought up in the previous subsection.

Variable Table API

VAR_IDX InsertVariableName(VAR_NAME variable_name)

Inserts a variable record with given variable_name into the variable table and returns its

index in the variable table.

AST API

STMT_NO InsertStmt(STATEMENT stmt, PARENT_BLOCK_TYPE type)

Insert statements into the AST and return its index, the statement number.

Procedure Table API

VOID InsertChildStmt(PROC_IDX procedure_index, STMT_NO child_stmt_number)

Inserts the child_stmt_number into the procedure record with given procedure_name in

the procedure table.

VOID InsertVariableModified(PROC_IDX procedure_index, VAR_IDX variable_index)

Inserts the given variable_index modified into the procedure record with the given

procedure_index in the procedure table.

Statement Table API

VOID InsertReadStatement(STMT_NO statement_number)

Inserts a read statement with the given statement_number.

3.5.4 PKB Insertion Processing and Validation

After all information from the SIMPLE program has been inserted, post processing is

executed to perform the following:
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1. check for valid procedure calls and cyclic dependencies

2. populate the variables that procedures, if, while, call statements uses or modifies

3. update the variable table with the statements and procedures that modify it

4. create cfgs for each procedure

The following figure details how these steps are performed.

Step Processing and Validation logic Rationale

1 ● All entries in the call statement

cache are checked against the

procedure table to see if the

procedure exists

● The call statements are updated to

reflect the index of the procedure

that is being called

● Topological sort is performed on the

procedures, starting from

procedures without any call

statements

● Topological sort is used to determine

the order of insertion in step 2

● Topological sort also detects any

cyclic dependencies between

procedures. If it is detected, an

exception is thrown

2 ● Using the topological sorted

procedures, each procedure is

updated to store the variables its

child statements uses or modifies

● Each if, while and call statement

within the procedure are also

updated to store the variables that

its child statement or calling

procedure uses or modifies

● The call, calls tar, callee and callee

star entries in the procedure table

are also updated using this

topological sort

● Topological sorted procedures have

to be used as procedures that call

other procedures will include all the

caller procedure’s used and modified

variables

3 ● Each entry in the variable table is

updated to reflect the statements

and procedures that modify or use it

● The variable table can only be

updated at this point after step 2 is

completed

4 ● CFGs for each procedure are created

and inserted into the procedure

table

● The AST and direct child statements
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of the procedure are retrieved for

this CFG creation

Figure 3.12: PKB Insertion Processing and Validation Logic

Note that these processing and validation steps cannot be computed on the fly, as data is

inserted into the PKB table statement by statement. For instance, the variables that if

statements use are dependent on the statements that are nested within. They can only be

updated after all statements have been inserted into the PKB.

3.6 PKB Extractor Facade
This section explains the design of the PKB Extractor Facade. It also describes some of the

extraction logic implemented in the class.

3.6.1 PKB Extractor Facade Design

The PKB Extractor Facade consists of the following objects:

1. constant table

2. procedure table

3. statement table

4. variable table

5. AST

6. modifies relation extractor

7. uses relation extractor

8. parent relation extractor

9. follows relation extractor

10. pattern relation extractor

11. calls relation extractor

12. next relation extractor

13. with relation extractor

14. projector

Due to space constraints, an enumeration, rather than a class diagram is used for this

description.

First note that the PKB Extractor Facade has access to each PKB table and AST (points 1-5).

Also, the logic for the extraction of each relation clause is encapsulated in a relation

extractor class (points 6-13). This is to prevent bloating of the actual PKB Extractor Facade

class. Finally, the class also consists of a projector object (point 14) to aid with the projection

of results from select clauses in PQL queries.

The following subsection describes the algorithm implemented in one instance of the

relation extractor.
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3.6.2 Interaction between QPS and PKB

Figure 3.13: QPS and PKB Interaction Sequence Diagram

36



The relation that is extracted in this example is: “any while statements that is a parent of any

statements”. The process starts at the QPS. The QPS parses a query and calls the PKB

Extractor Facade to query for the result. Similar to the interaction between SP and PKB,

communication from the QPS to the PKB is always done through this extractor facade class.

The PKB Extractor will first call the GetStmtNumbersByType method to extract all the

statements of type Any. It will then loop through all of these statements and check if each

parent statement matches the while statement type.

The list of APIs that are used in this extraction is displayed in the following subsection.

3.6.3 Key APIs: QPS and PKB Interaction

This section details the key APIs brought up in section 3.4.3.

PKB Extractor Facade API

QUERY_RESULT_TABLE Parent(QUERY_REF lhs_stmt_ref, QUERY_REF rhs_stmt_ref)

Returns a query result table with the computed parent information with the given

lhs_stmt_ref and rhs_stmt_ref.

ExtractorUtils API

LIST_OF_STMT_NO GetStmtNumbersByType(STMT_TYPE type)

Gets all the statement numbers of the given statement type.

AST API

STMT_NO GetParentStmtNo(STMT_NO stmt_no)

Returns the parent statement number of the given stmt_no.

STMT_TYPE GetStmtType(STMT_NO stmt_no)

Returns the statement type of the given stmt_no.

3.7 PKB Extraction Logic
This section elaborates on the extraction logic of the various PQL relations. Pseudocode and

the time complexity for one API per relation type is shown. It is also assumed that all

arguments passed are valid, and the validation checks within each API are omitted for

simplicity.

The synonym declarations shown here are assumed throughout the subsections:

37



● assign a

● if ifs

● procedure p

● variable v

● while w

3.7.1 Uses and Modifies Extraction

Uses and Modifies relationship extraction are similar and only differ by the API call to

retrieve the used or modified relation. Hence, only Uses relations are shown here.

PQL relation UsesS: Uses(5, “v”)

Line Code PKB Component

Referenced

1 initialize set use_v = {}

2 use_v = variables used in statement 5 AST

3 if “v” in use_v, return true. Else return false.

Time Complexity: O(1)

PQL relation UsesP: Uses(“p”, “v”)

Line Code PKB Component

Referenced

1 initialize set use_v = {}

2 use_v = variables used in procedure “p” Procedure Table

3 if “v” in use_v, return true. Else return false.

Time Complexity: O(N), N: Number of variables

3.7.2 Parent Extraction

PQL relation Parent: Parent(3, 4)

Line Code PKB Component

Referenced

1 parent_stmt_no = parent statement number of 4 AST

2 if parent_stmt_no is 3, return true. Else return false.

Time Complexity: O(1)

PQL relation ParentT: Parent*(3, 10)
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Line Code PKB Component

Referenced

1 parent_stmt_no = parent statement number of 10 AST

2 while parent_stmt_no is not null:

3 if parent_stmt_no is 3:

4 return true

5 else:

6 parent_stmt_no = parent statement number of

parent_stmt_no

AST

7 end if

8 end while

9 return false

Time Complexity: O(N), N: Number of statements

3.7.3 Follows Extraction

PQL relation Follows: Follows(3, 4)

Line Code PKB Component

Referenced

1 initialize vector s = []

2 if statement 3 is if/while statement: AST

3 s = child statements of statement 3 AST

4 else:

5 p = parent procedure of statement 3 AST

6 s = child statements of p Procedure Table

7 end if

8 binary search for statement 3 in s

9 if statement 4 is to the immediate right of statement 3 in

s, return true. Else return false.
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Time Complexity: O(logN), N: Number of statements

PQL relation FollowsT: Follows*(3, 10)

Line Code PKB Component

Referenced

1 initialize vector s = []

2 if statement 3 is if/while statement: AST

3 s = child statements of statement 3 AST

4 else:

5 p = parent procedure of statement 3 AST

6 s = child statements of p Procedure Table

7 end if

8 binary search for statement 3 in s

9 binary search for statement 10 in s

10 if statement 10 appears after statement 3 in s, return true.

Else return false.

Time Complexity: O(logN), N: Number of statements

3.7.4 Assign Pattern Extraction

PQL pattern assign: pattern a (“x”, “y + 1”)

Line Code PKB Component

Referenced

1 initialize vector result = []

2 initialize vector a_list = []

3 initialize set var_set = {}

4 a_list = all assignment statement numbers Statement Table

5 var_set = all variables that are modified Variable Table

6 for a in a_list:

7 if “x” in var_set and “y + 1” matches the ExprTree AST

40



pattern in AST, append a to result

8 end for

9 return result

Time Complexity: O(M*N), M: Number of tokens in assignment statements, N: Number of

statements

As mentioned in section 3.2.1, the ExprTree object contains a vector of tokens from the

source program inserted in postfix order. The pattern “y + 1” is also arranged in postfix order

by the QPS, which will be discussed in section 4.3.4, before being passed to the PKB for

evaluation. To evaluate this pattern, the ExprTree checks if all the elements in its vector

match “y + 1” in postfix order, that is “y”, “1”, “+”. To evaluate clauses such as pattern a (“x”,

_”y + 1”_), the ExprTree checks if the postfix order of “y + 1” appears as a consecutive

sequence within its vector.

3.7.5 If and While Pattern Extraction

PQL pattern if/while: pattern ifs (“x”, _, _) / pattern w (“x”, _)

Line Code PKB Component

Referenced

1 initialize vector result = []

2 initialize vector s_list = []

3 s_list = all if or while statement numbers Statement Table

4 for s in s_list:

5 initialize set v_set = {}

6 v_set = get control variables of s AST

7 for v in v_set:

8 if v is “x”, append v to result Variable Table

9 end for

10 end for

11 return result

Time Complexity: O(M*N), M: Number of variables, N: Number of statements
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3.7.6 With Extraction

PQL with clause: with v.varName = p.procName

Line Code PKB Component

Referenced

1 initialize vector result = []

2 initialize vector v_list = []

3 initialize vector p_list = []

4 v_list = all variable names Variable Table

5 p_list = all procedure names Procedure Table

6 for v in v_list:

7 for p in p_list:

8 v_name = variable name for v Variable Table

9 p_name = procedure name for p Procedure Table

10 if v_name is p_name, insert v in to result

11 end for

12 end for

13 return result

Time Complexity: O(M*N), M: Number of procedures, N: Number of variables

3.7.7 Calls Extraction

PQL relation Calls: Calls(“procedureAlpha”, “procedureBeta”)

Line Code PKB Component

Referenced

1 initialize set p_set = {}

2 p_set = procedures that “procedureAlpha” calls Procedure Table

3 if “procedureBeta” is in p_set, return true. Else return

false.

Time Complexity: O(1)
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PQL relation CallsT: Calls*(“procedureAlpha”, “procedureGamma”)

Line Code PKB Component

Referenced

1 initialize set p_set = {}

2 p_set = procedures that “procedureAlpha” calls and

transitively calls

Procedure Table

3 if “procedureGamma” is in p_set, return true. Else return

false.

Time Complexity: O(1)

3.7.8 Next Extraction

PQL relation Next: Next(2, 3)

Line Code PKB Component

Referenced

1 initialize set s_set = {}

2 Get the CFG corresponding to the procedure that

statement 2 resides in

Procedure Table,

AST

3 s_set = all next statements of statement 2 CFG

4 if statement 3 is in s_set, return true. Else return false.

Time Complexity: O(1)

PQL relation NextT: Next*(2, 7)

Line Code PKB Component

Referenced

1 initialize set s_set = {}

2 Get the CFG corresponding to the procedure that

statement 2 resides in

Procedure Table,

AST

3 s_set = all next and transitive next statements of

statement 2 (BFS of CFG)

CFG

4 if statement 7 is in s_set, return true. Else return false.

Time Complexity: O(N), N: Number of statements
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3.7.9 Affects Extraction

Note that the following statement numbers 1 and 5, are assumed to be assignment

statements.

PQL relation Affects: Affects(1, 5)

Line Code PKB Component

Referenced

1 v = variable modified by statement 1 AST

2 Get the CFG corresponding to the procedure that

statement 1 resides in

Procedure Table,

AST

3 BFS on the CFG starting from statement 1 to statement 5.

Terminate the BFS when there exists a statement that

modifies v.

CFG, AST

4 if BFS reaches statement 5, return true. Else, return false.

Time Complexity: O(N), N: Number of statements

PQL relation AffectsT: Affects*(1, 5)

Line Code PKB Component

Referenced

1 initialize queue q = {}

2 push statement 1 into q

3 while q not empty:

4 s = pop element from q

5 initialize set s_set = {}

6 v = variable modified by s AST

7 Get the CFG corresponding to the procedure that s

resides in

Procedure Table,

AST

8 BFS on the CFG starting from s. Insert any assignment

statements that use v into s_set.

CFG, AST

9 if statement 5 in s_set, return true
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10 push elements in s_set to q

11 end while

12 return false

Time Complexity: O(N²), N: Number of statements
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4 Query Processing Subsystem (QPS)

4.1 Overview
The QPS handles all incoming PQL queries from end-users. As such, it will be responsible for

tokenizing, validating, and evaluating queries before projecting the relevant results to the

autotester.

To better handle the series of design issues related to the evaluation of queries, the query

processor subsystem has been decomposed into 4 sub-components:

1. Query Tokenizer

2. Query PreProcessor (parsing)

3. Query Optimizer (optimization/arrangement of Query Nodes)

4. Query Evaluator (evaluation and projection)

The following architecture diagram showcases the relationships between the above

sub-components:

Figure 4.1: QPS Architecture Diagram

The decision for the decomposition shown in Figure 4.1 can be justified by the following 3

points:

Cohesion Separating the functionalities of tokenizing, parsing, optimizing

and evaluation would result in highly focused and strongly

related code for each sub-component as they work on the same

issue. This improves cohesion and thereby improves the

understandability, maintainability, and reusability of the
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components created.

Coupling In line with the above justification, the improvement in

cohesion reduces the impact of coupling as similar

functionalities are grouped together. Hence, the degree of

dependence between independent components will be

reduced.

This in turn improves the ease of maintenance, integration, and

testing.

Separation of Concerns By modularizing query processor components, there will be a

reduction in functional overlaps and ripple effects when

changes are made to different parts of the system.

4.2 Query Nodes
Before elaborating on each QPS subcomponent, a brief overview of Query Nodes will be

provided in this section. Query Nodes are implemented to serve as an abstraction for PQL

relation clauses.

Figure 4.2: Query Node Class Diagram

Query Nodes store information for all clauses in PQL queries. Each clause type has its own

concrete Query Node implementation, which is inherited from the abstract Query Node

class. Left and right parameters (lhs_arg_ and rhs_arg_) are stored as Query Ref objects in

the Query Node, which denote the statement or entity references found in relation clauses.

For example, in Follows(s3, 4), both s3 and statement number 4 are stored as Query Ref
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objects. The relationship type is also stored in the Query Node (query_type_) class as an

enum. This is to facilitate the sorting of Query Nodes in the Query Optimizer, which is

explained in section 4.4.

4.3 Query PreProcessor and Query Tokenizer

4.3.1 Overview

In this section, the design for the Query PreProcessor and Query Tokenizer sub-components

will be discussed in tandem.

The class diagram below will be referred to in the following sections and gives an overview

of the relationship between the PreProcessor and Tokenizer subcomponents.

Figure 4.3: Query PreProcessor Class Diagram

As detailed in Figure 4.3, every Query PreProcessor object will be associated with only 1

EntTable and Query Tokenizer reference, both of which are critical for the parsing process.

The Query Tokenizer will also be responsible for creating Query Token objects encapsulating

the type (defined by the enum class Query TokenType) and the value of tokens generated

from the query input. The EntTable will be responsible for storing relationship to invalid

argument type mappings (eg. entRef/stmtRef). Finally, the Query PreProcessor will parse the

Query Tokens obtained into Query Ref or Query Ref Attribute (for select and with clauses)

objects which will subsequently be stored in a Query ProcessorResults object.

4.3.2 Usage Scenario

The following is an example usage scenario of how a query is tokenized and validated by the

Query PreProcessor:

1. A Query PreProcessor object will always be initialized together with a Query

Tokenizer and EntTable object. The EntTable object will be populated with the

relevant relationship-argument type mappings during initialization.
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2. The QueryPreProcessor::Parse() method is then called when there is an incoming

query.

3. Thereafter, the QueryTokenizer::GetNextToken() method will be called to fetch the

Query Tokens.

4. The Query Tokenizer object is responsible for tokenizing and encapsulating words in

the provided query into Query Token objects which would, in turn, be identified by a

type as defined by the Query Token Type enum.

5. The Query PreProcessor will then call the relevant Parse methods to validate the

syntax of the Query Tokens against the grammar rules provided in the specifications.

6. With synonym attribute types introduced in the latest iteration, Select clause

synonyms that are declared without an explicit type will invoke the

AttrTable::GetDefaultAttrType() method to aid in the creation of a Query Ref Attr

object.

7. In the validation process, the EntTable::ValidateArgTypes() or

EntTable::ValidatePatternTypes() method may be called to check if the arguments

provided in the relationship or pattern clauses are of valid types.

8. Next, the PreProcessor creates the relevant Query Ref object.

9. These Query Ref objects are then used to create Query Node objects to encapsulate

the relevant information for relationship and pattern clauses.

10. These Query Node objects are then added to the nodes vector in the Query

ProcessorResults object

11. After the Query PreProcessor completes parsing all clauses, it returns the Query

ProcessorResults object.

This process is shown in the following sequence diagram Figure 4.4:
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Figure 4.4: PQL Query Parsing Sequence Diagram

4.3.3 Key APIs: QPS Parsing

The following table details critical APIs encountered in the above sequence diagram:

Query PreProcessor APIs

QUERY_PROCESSOR_RESULTS Parse()

Returns a Query PreProcessor Results object populated with parsed query information to

facilitate query optimization and evaluation.
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VOID Init()

Initializes the entity table with records of all relationship and pattern types with their

respective accepted argument types in a key-value pair mapping.

VOID ParseDeclaration()

Validates and parses the detected query declaration according to grammar rules. If the

detected syntax is valid, the design-entity and synonym key-value pair will be accepted.

Else, an exception will be thrown.

VOID ParseSelect()

Validates and parses the detected Select clause and its corresponding declaration*

according to the grammar rule. If the detected syntax is valid, the Query Processor Results

object will be populated with the declaration parsed. Else, an exception will be thrown.

VOID ParseSuchThat()

Validates and parses the detected relationship clause and its arguments according to the

grammar rule. If the detected syntax is valid, the Query Processor Results object will be

populated with the relationship details. Else, an exception will be thrown.

VOID ParsePattern()

Validates and parses the detected pattern clause and its arguments according to grammar

rules. If the detected syntax is valid, the Query Processor Results object will be populated

with the pattern details. Else, an exception will be thrown.

VOID ParseWith()

Validates and parses the detected With clause and its arguments according to the

grammar rule. If the detected syntax is valid (the corresponding attribute matches the

synonym type), a Query Node will be created with the With clause details and added to

the Query Processor Result object. Else, an exception will be thrown.

VOID ParseAnd()

Validates and parses the detected And clause according to grammar rule. If the detected
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syntax is valid, the relevant relationship or pattern parsing method will be called.

EntTable API

VOID AddEntry(RELATIONSHIP_TYPE type, ENTITY_TABLE_ENTRY entry)

Adds a relationship enum type and its corresponding argument types stored in an

ENTITY_TABLE_ENTRY as a key-value pair to the Entity Table.

VOID ValidateArgTypes(STRING rs_type, QUERY_REF_TYPE arg1, QUERY_REF_TYPE arg2)

Checks if both arguments are allowed for the relationship defined in the string provided.

Else, an exception will be thrown.

VOID ValidatePatternTypes(STRING pattern_name, QUERY_REF_TYPE arg1)

Checks if the argument provided for the pattern’s first argument is allowed. Else, an

exception will be thrown.

AttrTable API

ATTR_TYPE GetDefaultAttrType(QUERY_REF_TYPE arg1)

Returns the default attribute type associated with the Query Ref Type supplied. For

instance, if a “constant” Query Ref Type is supplied, the “value” Attr Type will be returned.

Query Tokenizer API

QUERY_TOKEN GetNextToken()

Tokenizes the next token encountered in the query provided during initialization. Returns a

Query Token object that encapsulates the type and value of the token. This method will

also ignore all preceding whitespace before the token is detected.

4.3.4 Pattern Parsing

As assign pattern clauses accept both raw and partial expressions as arguments, the

QueryPreProcessor::ParsePattern method, when invoked, will call upon the

PatternParser::ParseRawExpr method to parse expressions in the same logical flow as

outlined in section 2.3.5.

The parsed expression, now in the form of in-fix ordered Query Tokens, will have to be

converted to a post-fix order to facilitate subsequent queries to the PKB during the
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evaluation stage in the Query Evaluator. To facilitate this conversion, the Expression

Converter, as detailed in section 2.3.6, will be used.

However, as the API of the Expression Converter only accepts Token objects, the parsed

Query Tokens will have to be converted to a suitable Token representation via the

TokenAdapter::ToToken method.

4.3.5 Design Decision: Relationship Clause Argument Validation

Approach 1: Table-Driven Design using EntTable

The table-driven design relies on the creation of key-value pairs to validate relationship

and pattern arguments. Relation types are stored as keys while invalid argument types are

stored as values.

The Entity Table (EntTable) can be looked up to check if the provided argument type is

valid. The design of the EntTable has also been augmented to account only for syntactic

mappings. Hence, a mapping of invalid argument types based on grammar rules is

adopted without accounting for semantic validity. Refer to Figure 4.4 below for an

example instance of the Entity Table.

Advantages:

● Improved flexibility to design model changes. Since each relationship and its invalid

argument types are stored as key-value pairs, more relationships or types can be

added easily. This improves the ease of further extension.

● Accessing the list of argument types for each relationship/pattern clause can be

done in O(1) time.

Disadvantages:

● Increased space complexity. Since a table has to be initialized to store the relevant

argument type mappings for each relationship and pattern clause, there would be

an increase in memory consumption.

● However, as the number of relationship and argument types are limited, the

memory overhead incurred is minimal.

Approach 2: Use If-Else conditional logic for validating each relationship type

Advantages:

● There is no additional memory used.

Disadvantages:

● Hardcoding will be prevalent as this implementation requires the implementation

of available relationship types and their accompanying argument requirements.
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This increases the complexity of making an extension to the program.

Furthermore, the overall complexity of the PreProcessor will also increase if the

number of combinations of types increases.

Justification on Final Choice (Approach 1):

As approach 1 supports better extensibility for future iterations with a minimal trade-off in

memory complexity, it was chosen as the method to validate queries.

Relation Argument 1 Argument 2

Parent kRawVar | kRawProc

(these are invalid stmtRef types)

kRawVar | kRawProc

Parent* kRawVar | kRawProc kRawVar | kRawProc

Follows kRawVar | kRawProc kRawVar | kRawProc

Follows* kRawVar | kRawProc kRawVar | kRawProc

Uses Empty list

(this implies that both stmtRef and

entRef types are accepted)

kStmtNumber

(this is an invalid entRef type)

Modifies Empty list kStmtNumber

Next kRawVar | kRawProc kRawVar | kRawProc

Next* kRawVar | kRawProc kRawVar | kRawProc

Affects kRawVar | kRawProc kRawVar | kRawProc

Affects* kRawVar | kRawProc kRawVar | kRawProc

Calls kStmtNumber kStmtNumber

Calls* kStmtNumber kStmtNumber

Pattern kStmtNumber Empty list

Figure 4.5: EntTable Example Instance

As observed in Figure 4.5, invalid instead of valid types are stored in the EntTable. Hence, the

validation methods check if the provided arguments match any of the entries found in the

EntTable for the respective relation required. If found, an exception will be thrown.
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4.3.6 Design Decision: Tokenizing and Parsing Incoming Queries

Approach 1: Separating tokenizing and parsing responsibilities into different

components

Advantages:

● Better cohesion within each component and coupling is reduced as well

● Adherence to the Single Responsibility Principle

● Open to extension

Disadvantages:

● May introduce bottlenecks as the development of the PreProcessor can only start

after the development of the tokenizer has been completed.

Approach 2: Combining both tokenizing and parsing into 1 processor component

Advantages:

● Ease of implementation as functionalities can be written together in tandem under

the same class

Disadvantages:

● Increased coupling, which possibly creates a God class

Justification on Final Choice (Approach 1):

Approach 1 is ultimately chosen due to its better adherence to software engineering

principles. Moreover, as both sub-components can be developed by the same person, the

issue of the bottleneck would be resolved.

4.4 Query Optimizer
4.4.1 Overview

The Query Optimizer is responsible for optimizing the processing of queries that are parsed

by the Query PreProcessor. This is useful for multi-clause queries, which would each need to

be evaluated in order to arrive at the final output. The order of evaluation is a key factor in

determining the time needed to process queries, and the Query Optimizer is responsible for

sorting the clauses into the most efficient order.

To handle optimization, the Query Optimizer needs to be able to retrieve parsed query

abstractions from the Query PreProcessor, and proceed to generate output that can be

processed by the Query Evaluator. Two structs are used for this process:

QueryProcessorResults and QueryOptimizerResults. As mentioned in section 4.3, the

QueryProcessorResults struct is generated by the Query PreProcessor component, which is

then passed to the Query Optimizer in the initialization stage. The Query Optimizer sorts the
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nodes and creates the QueryOptimizerResults struct, which is then passed to the Query

Evaluator component for evaluation.

The following figure outlines key attributes of the Query Optimizer.

Attributes Purpose

clause_no Gives an index numbering to the different query clauses

group_no Gives a group numbering to the different groups created

processed_query_nodes Stores Query Nodes that contain synonyms found in the

select_ref or are connected to it.

select_string_set Stores all select synonyms in string form in a set for

easier comparison subsequently

raw_nodes Stores nodes that only contain a raw integer or raw

variable or procedure name. Respectively, these refer to

PQL Integers and PQL Identifiers (wrapped in double

quotation marks)

node_index Maps the index number of clauses to the actual Query

Node itself

adj_list Adjacency list to group Query Nodes

group_synonyms Maps clause groups to their respective synonym lists.

This helps to sort groups based on whether their

synonyms are present in the select clause.

res Stores the QueryOptimizerResults struct to be output.

Figure 4.6: Key Components of Query Optimizer

The following subsections describe the process in which the Query Nodes are sorted and

grouped. The following PQL query will be considered: stmt s1, s2, s3, s4, s5, s6; Select <s1,

s5> such that Parent(s1, s2) and Follows(s3, s4) and Modifies(s5, “v”) and Uses(s6, “v”) and

Next(s5, 10) and Affects(s2, s3) and Follows(11, 12).

4.4.2 Grouping of Query Nodes

The relations are first separated into groups with connected synonyms and raw nodes

(relations that either yield true or false results):

● Raw nodes: Follows(11, 12)

● Group 1: Parent(s1, s2), Affects(s2, s3), Follows(s3, s4)

● Group 2: Modifies(s5, “v”), Next(s5, 10)
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● Group 3: Uses(s6, “v”)

This grouping is done using the adjacency list (adj_list) attribute in the Query Optimizer.

Edges between nodes are formed when both share at least one synonym. These are stored

in the adjacency list. Depth first search is then performed over the adjacency list to separate

these nodes into connected groups.

Thereafter, the groups are then iterated over. Groups that contain synonyms in the select

synonyms are differentiated from groups that do not:

● Raw nodes: Follows(11, 12)

● Non-select nodes group 1: Uses(s6, “v”)

● Select nodes group 1: Parent(s1, s2), Affects(s2, s3), Follows(s3, s4)

● Select nodes group 2: Modifies(s5, “v”), Next(s5, 10)

4.4.3 Optimization Heuristics

The actual optimization of each group is described in this subsection. Each group, containing

both non-select and select clauses, are optimized. As the same optimization algorithm is

used on all groups, only select nodes group 1 will be explained: Parent(s1, s2), Affects(s2,

s3), Follows(s3, s4).

Firstly, groups are sorted based on the restrictiveness of the clauses. The following shows

the estimated restrictiveness of each clause from most restrictive to least restrictive:

● With

● Pattern (assign, if and while)

● Calls

● Calls*

● Parent

● Follows

● Modifies

● Uses

● Affects

● Next

● Follows*

● Parent*

● Affects*

● Next*

Based on this restrictiveness order, the nodes will be sorted to Parent(s1, s2), Follows(s3,

s4), Affects(s2, s3). This sorting is done to ensure that the combination of results per clause

is conducted over the smallest possible result set.

Next, the nodes are sorted again to ensure that the incoming node to be evaluated contains

at least one synonym that appears in all the nodes that occur prior to it. The nodes will then

be sorted to: Parent(s1, s2), Affects(s2, s3), Follows(s3, s4). This sorting is to ensure that the
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combination of query results will be executed with an equi-join algorithm, rather than a

cross product algorithm, which is slower. Equi-joins are executed when the two results to be

combined share at least one common synonym. Cross products are executed when the

results to be combined do not share any common synonyms. This is further elaborated in

section 4.6. Furthermore, this round of sorting minimizes the number of swaps required, in

order to retain the restrictiveness order as much as possible.

4.4.4 Design Decision: Optimization Heuristic

Approach 1: Pre-evaluation Optimization

Optimization is conducted prior to evaluation, as described in section 4.4.3. The

restrictiveness of each clause is estimated and the Query Nodes are sorted such that

equi-joins can be performed.

Advantages:

● The evaluation of each query clause incurs O(N) time, as equi-joins take as long

Disadvantages:

● The estimation of query restrictiveness may not be accurate

● Greater optimization runtime overhead as two rounds of sorting are required

Approach 2: Post-evaluation Optimization

Optimization is conducted after evaluation. The results of each Query Node are stored in

memory, then sorted based on its size. The results are sorted in ascending order and then

combined.

Advantages:

● Query results with large differences in size can be evaluated faster. This is because

query results smaller in size can be combined first. Future combination of these

results will then result in less iterations, as opposed to combining large results right

at the start of the evaluation.

Disadvantages:

● Combination of query results may incur cross products, as the results are sorted

based on size, not if synonyms are connected

● More memory may be used as each result has to be stored in memory and sorted,

before they can be combined

Justification on Final Choice (Approach 1):

Approach 1 is chosen. It was found that the bottleneck of the overall SPA system stems

from the cross product of results. Approach 1 reduces this bottleneck the most and is thus

chosen as the optimization heuristic.
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4.5 Query Evaluator

4.5.1 Overview

After the optimization of Query Nodes, the nodes in the QueryOptimizerResults will be

extracted and stored in a newly instantiated Query Evaluator object. This Query Evaluator

object then evaluates this abstract and optimized representation of the PQL query. The

following is a class diagram of the Query Evaluator:

Figure 4.7: Query Evaluator Class Diagram

Briefly, the responsibilities of each attribute is highlighted as follows:

● select_refs_: stores the list of PQL synonyms to be projected on

● boolean_nodes_: stores the list of Query Nodes that contain only PQL Integers or

Identifiers

● non_select_nodes_: stores the group of Query Nodes that do not contain any

synonyms in select_refs_ or are not connected to any other Query Nodes that share

synonyms in select_refs_

● normal_nodes_: stores the group of Query Nodes that contain synonyms in

select_refs_ and its connected nodes.

To evaluate queries, the Query Evaluator traverses across all these Query Nodes. Each Query

Node implements evaluate methods to retrieve information from the PKB. These

information are stored as Query Result Tables, discussed further in section 4.6, and are

subsequently joined and projected on to yield the desired result within the Query Evaluator.

4.5.2 Interaction with PKB

This section provides an example of how a generic Query Node retrieves data using the

relevant PKB API:

1. Based on the left and right arguments, the Query Node will call a GetCombination

method to receive its query combination.

2. The node will then call the PKB API with the appropriate parameter, depending on

the type of query combination.

3. The data will be retrieved via the PKB API and returned to the Query Node .

To better illustrate this process, an example for FollowsNode is shown in this sequence

diagram:
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Figure 4.8: PKB Follows API Call Sequence Diagram

4.5.3 Query Evaluator Evaluation Order

This section discusses how queries are evaluated within the Query Evaluator. The following

activity diagram provides an overview on how this is performed.
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Figure 4.9: Query Evaluator Evaluation Activity Diagram

As seen in this activity diagram, the select refs attribute is first checked to determine if it is

empty. If it is empty, a BOOLEAN select query is assumed, otherwise, the standard synonym

selection is assumed. Next, regardless of selection paths, the boolean nodes and non select

nodes are evaluated. These nodes, if evaluated to false, will return “FALSE” or an empty list,

depending on the type of select query. If it evaluates to true, “TRUE” will be returned for

BOOLEAN selects while the normal nodes will be evaluated next for synonym selects. After

evaluation, the tables obtained from each Query Node will be combined and projected.

4.6 Query Result Table

Query Result Tables are data structures that store the results of evaluate methods from the

Query Nodes. It supports the projection of selected synonyms in PQL queries. It also

supports equi-joins and cross products between tables. This section discusses the design of

Query Result Tables.
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4.6.1 Overview

Query Result Tables are implemented to resemble csv (comma separated values) files with

columns and rows. A vector of vectors is used to represent the list of rows, while a hashmap

is used to map column names to the indexes within the row. For instance, consider an

abstract representation of a table as shown below:

“x” “y”

10 100

20 200

30 300

Figure 4.10: Query Result Table Abstract Representation

The following diagram illustrates the actual implementation representation of the Query

Result Table.

Figure 4.11: Query Result Table Actual Representation

4.6.2 Design Decision: Row or Column Major Tables

Approach 1: Row Major Tables

A row major implementation refers to storing the table as a list of rows, rather than a list

of columns.

Advantages:

● Easier to implement as the size of the rows can be enforced easily. Additionally,

equi-joins require the access of rows, rather than columns. This makes the
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implementation of equi-joins easier as well.

Disadvantages:

● Slower projection of results with runtime O(N), as each row in the table has to be

iterated over to aggregate the relevant columns.

Approach 2: Column Major Tables

A column major implementation refers to storing the table as a list of columns.

Advantages:

● Faster projection of results with runtime O(1), as the columns just need to be

selected and copied from the table

Disadvantages:

● Difficult to implement because additional checks have to be implemented to

ensure that the columns are of equal length

● Slightly more runtime overhead when iterating over the columns for table joins.

This is because caching exploits spatial locality and adjacent columns (rather than

rows) are more likely to be cached in column major tables. Since equi-joins involve

the access of rows, a column major implementation may incur slightly more

runtime overhead.

Justification on Final Choice (Approach 1):

Approach 1 was ultimately chosen due to its ease of implementation. Since the

aggregation of Query Result Tables is critical in determining the accuracy of PQL queries, it

is less risky to implement row major tables. Furthermore, projection of results from the

Query Result Table is only done once per PQL query. Hence, the difference in projection

runtime would be minimal as well.

4.6.3 Design Decision: Table Join Algorithms

Equi-joins and cross products between tables have to be supported for the aggregation of

data in the Query Nodes. Equi-joins are used whenever tables share connected synonyms.

Otherwise, cross products are used. The following compares two algorithms that performs

equi-joins between two tables:

Approach 1: Hash Joins

Hash join involves the partitioning of one of the two tables into buckets via a hash

function h. After partitioning, h is applied to each row of the other unpartitioned table. If

the newly hashed row can be found in any partitioned bucket, this row is combined and

output into the result table.
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Advantages:

● Faster runtime of O(N)

Disadvantages:

● Additional space complexity of O(N) is required to store the partition

● Extension to support cross products is inefficient, as all rows on both tables have to

be iterated over

● Additional runtime overhead of partitioning, especially when the number of rows

to be joint is small

Approach 2: Loop joins

Loop joins require the iteration over both tables. This is to check if each row in a table is

equivalent to any other rows in the other table. Only output the row if it appears in both

tables.

Advantages:

● Easily extended to support cross products

● No additional space complexity needed

● No runtime overhead of partitioning

Disadvantages:

● Slower runtime of O(N2)

Justification on Final Choice (Combination of Approach 1 and Approach 2):

A combination of Approach 1 and 2 is used in the final implementation. Time constraints

are a priority in the SPA requirements, and the overhead of joining tables using an O(N2)

algorithm is significant. Hence, hash join has to be implemented. Cross product incurs an

overhead as well, and is therefore extended from the loop join algorithm rather than the

hash join algorithm. Furthermore, through optimization and testing, it was discovered that

performing loop joins on tables with 1 row was more efficient than hash joins. Thus, the

table join method was implemented to contain a conditional statement that uses

● cross product: when tables do not share any common columns

● loop join: when either tables contain 1 row only

● hash join: for all other cases
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5 Testing
In this section, the technical aspects of testing of the project will be discussed.

Four types of testing will be discussed: unit testing, integration testing, system testing, and

load testing.

5.1 Unit Testing
Unit tests isolate and test individual modules independently. This reduces the complexity

and time taken for debugging found since bugs can be narrowed down to modular units

under test.

Furthermore, this increases the ease of integration tests as emphasis can be placed on

testing API interactions between components/modules in higher-level testing as individual

functions have already been tested on a modular scale with unit testing.

Two sample unit test cases for PKB and Query Processor are provided to showcase unit

testing adopted in the project.

For the PKB, the validation of successful insertion and extraction of data from the PKB tables

will be demonstrated.

For the Query Processor, unit tests for the decomposed subcomponents, namely the Query

Tokenizer and Query PreProcessor, will be demonstrated. For the former, successful

tokenization of the provided query input will be demonstrated while for the latter, successful

consumption of the query input will be demonstrated.
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5.1.1 PKB Variable Table Insertion Test

Figure 5.1: Variable Table Insertion Unit Test

Link to test code.

The unit test above checks if the InsertStmtUsingVariable(int stmt_number) method can

correctly insert statement numbers that use a variable, into the corresponding variable

record entry. It tests the following parameters:

● Valid statement numbers and variable indexes

● Invalid statement numbers, such as integers less than or equal to 0

● Invalid variable indexes, such as indexes that exceed the size of the table, or are

negative

Note that the retrieval of variable information is tested in another function.
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5.1.2 PKB Extractor Facade Modifies Test

Figure 5.2: PKB Extractor Modifies Relation Unit Test

Link to test code.

This unit test checks if the Modifies(int stmt_no, string var_name) method in the PKB can

extract ‘Modifies’ information accurately. It tests the following parameters:

● Valid statement numbers that modify existing variables

● Valid statement numbers that do not modify existing variables

● Negative statement numbers, that are not accepted

● Variables that do not exist in the (line 348)

As many ‘SECTIONS’ were used, the remaining portion of the unit test is not included in this

example.
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5.1.3 QPS Query Tokenizer Test

Figure 5.3: Query Tokenizer Token Equality Method

Figure 5.4: Query Tokenizer GetNextToken Unit Test
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Link to test code.

The unit test in Figure 5.4 assesses and validates if the GetNextToken() method can

successfully tokenize the query input into an appropriate Query Token object with a valid

type (enum) and value (raw string representation). Additionally, it can also be observed in

Figure 5.3 that the token equality comparison has been abstracted to a test method,

IsTokenEq() for code reusability.

The following parameters are also assessed in this test:

● Valid identification of declaration tokens ( which uses keywords like procedure )

● Valid identification of symbol tokens such as brackets and semicolons

● Valid identification of select and relationship tokens such as Parent/Follows

● Valid categorization of undefined token values as a possible synonym name tagged

by the kAttribute enum

Invalid inputs are tested separately in a negative test case.
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5.1.4 QPS Query PreProcessor Test

Figure 5.5: Query PreProcessor Consume Synonym Unit Test

Link to test code.

The unit test in Figure 5.5 assesses and validates if the ConsumeSynonym() method can

successfully consume a valid Query Token object suitable for a synonym name despite

bearing different token types as seen in the previous sample. This allows the handling of

situations where keywords are used as synonym names. For instance, assign Select;

The following parameters are assessed in this test:

● Valid consumption of declaration type tokens for synonym names

● Valid consumption of relationship type tokens for synonym names
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● Valid consumption of other keyword type tokens (ie Select, pattern) for synonym

names

5.1.5 Unit Test Statistics

The figure below shows the line coverage (%)  of unit tests across code folders.

Figure 5.6: Unit Tests Line Coverage

Unit testing efforts were consistent across the Models, PKB, PQL, and Source_Processor

folders. Each of these folders had at least 75% of unit test line coverage. Models, PKB and

Source_Processor folders were rigorously tested. Each of these folders had at least 90% of

line coverage.

5.2 Integration Testing
In this section, integration testing for each of the major components in SPA will be discussed.

The integration tests aim to discover bugs as modular components interact with one

another.

5.2.1  SP to PKB Integration Testing

The SP is responsible for calling respective APIs in the PKB Inserter Facade in order to extract

key design information into the PKB. In order to test the integration between the SP and the

PKB Inserter Facade, a sample SIMPLE program is implemented:
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Figure 5.7: Test SIMPLE Program

This SIMPLE program is parsed with the SP and inserted into the PKB. To test if the

information has been inserted correctly, getters are called on the PKB tables to ensure that

the required information exists and is accurate.

The following is a snippet of the SP and PKB integration test.
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Figure 5.8: SP and PKB Integration Test

Link to test code.

The methods used in this test are outlined in the following table:

Purpose Integration Test Method Calls

Making sure that

procedure

information is

successfully

GetProcedureName(procedure index)

- Returns name of procedure at index

GetProcedureChildStmts(procedure index)

- Verifies child statements of procedure at index
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inserted into the

PKB

GetProcedureVariablesModified(procedure index)

- Ensures that all modified variables are tagged under the

correct procedure index

GetProcedureVariablesUsed(procedure index)

- Ensures that all used variables are tagged under the correct

procedure index

The successful

insertion of

Variable and

constant

information

GetConstants()

- Ensures that all constants are inserted

GetVariableName(variable index)

- Ensures that variable names are successfully inserted at index

GetModifyingStatemenGetReadStmt(26)ts(variable index)

GetUsingStatements(variable index)

- Ensures that variables are modifying and using the correct

indexes

The successful

insertion of call,

print, read, print

statement

information

GetCallStatements()

GetIfStatements()

GetReadStatements()

GetPrintStatements()

GetWhileStatements()

GetAssignStatements()

- Ensures that the statement numbers of different statement

types are inserted correctly

GetAssignStmt(statement number)

GetIfStmt(statement number)

GetWhileStmt(statement number)

GetPrintStmt(statement number)

GetReadStmt(statement number)

GetCallStmt(statement number)

- Ensures that the statement numbers of different statement

types are inserted correctly

Figure 5.9: SP and PKB Integration Test Methods
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5.2.2  QPS to PKB Integration Testing

Figure 5.10: QPS and PKB Integration Follows* Test

Link to test code.

All aspects of the QPS are tested during the integration testing from PQL to PKB. To test the

system, a PQL query is first provided to the Query PreProcessor which creates a Query

Optimizer. After invoking the optimizer’s optimize method, it will return a

QueryOptimizerResult struct containing sorted Query Nodes in their respective groups. This

struct is then passed to the Query Evaluator, which will traverse the Query Nodes in the

different vectors to invoke the evaluation method on individual Query Nodes. The Query

Nodes will then use an API call to acquire the result from the PKB. The Query Evaluator
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process evaluates all returned results before returning a final output. The final output is

checked to ensure that the Query Evaluator returns a correct result.

For example, the table below illustrates the QPS to PKB integration testing test plan with

different clauses and parameters.

Declaration: stmt s, s1, s2; while w; if ifs; assign a, a1,a2;

Clauses that are tested Parameter Permutation

Select clause 1. Single results

a. variables, print, while, if, read, assign, constants

and statement numbers

2. Tuples

a. <variables, if> , <stmt, read>,<if procedure>

b. <while, procedure>, <while, variable>

3. Boolean

a. General

i. Select Boolean with no such that or

pattern clause

b. Select Boolean for queries with return a result

c. Select Boolean for queries with does not return a

result

d. Queries used are mainly from Uses, Modifies,

Follow and Pattern clauses
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Such that

Follows/Follows*and

Parent/Parent*

1. Both Stmt ref - synonyms

a. Some examples but not limited to:

i. Follows(s1, s2) & Parent(s1,s2)

ii. Follows(a, s1) & Parent(a, s1)

2. Stmt No and StmtRef- synonym

a. Some examples but not limited to:

i. Follows(2, s1)  & Parent(4,s)

ii. Follows(3, w) & Parent(13,w)

3. Stmt Ref - synonym and Stmt No

a. Some examples but not limited to:

i. Follows(s1, 26) & Parent(ifs, 8)

ii. Follows(s1,11) & Parent(w,5)

4. Both Stmt No

a. Some examples but not limited to:

i. Follows(1,2) & Parent(4,5)

ii. Follows(9,10) & Parent(13,15)

5. Wildcard

a. Some examples but not limited to:

i. Follows (a ,_)  & Parent(w, _ )

Such that

Uses

and Modifies

1. Stmt Ref - synonyms and Variable

a. Uses(s, v) & Modifies (s,v)

2. Stmt Ref and “Ident”

a. Uses (21, “z”) & Modifies(s, “i”)

i. “i” and “z” are variables declared in

source program

3. Stmt No and Variable

a. Uses(5, v) & Modifies(2, v)

4. Procedure

a. Uses(procedure name, procedure name) &

Modifies (procedure name,  procedure name)

5. WildCard

a. Uses (s, _) & Modifies(w, _)

b. Uses(p, _) & Modifies(p, _)

Such that

Calls and Calls*

1. Both Procedures

a. procedure p, q; Select p such that Calls(p, q)

2. Procedure and “Ident”

a. procedure q; Select q such that Calls(q, "p")

i. “p” is a procedure defined in source

program

3. Procedure and “Ident”
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a. procedure q; Select q such that Calls(“p”, q)

i. “p” is a procedure defined in source

program

4. Wildcard

a. Calls( _ , _ ) & calls( _ , procedure name)

Such that

Next and Next*

1. Both Stmt Ref

a. Next(ifs, a) & Next(a1, a2)

2. Stmt Ref and Stmt No

a. Next(ifs, 7) & Next(print, a)

3. Stmt No and Stmt Ref

a. Next(6, s) & Next(12, if)

4. Both Stmt No

a. Next(4, 5) & Next(20, 21)

Such that

Affects and Affects*

1. Both Stmt Ref

a. Affects(a,a) & Affects(a,s)

2. Stmt Ref and Stmt No

a. Affects(a,9) & Affects(s,7)

3. Stmt No and Stmt Ref

a. Affects(4, s) and Affects(2, a)

4. Both Stmt No

a. Affects(2, 13) & Affects(11, 11)

5. Wildcard

a. Affects(_, _) and Affects(a, _) and Affects(s, _)

With Some examples but not limited to:

1. constant c; assign a; Select c with c.value = a.stmt#

2. variable v; Select v with v.varName = "x”

3. procedure p; Select p with "proc" = p.procName

Assign Pattern Clause 1. Partial Pattern Matching

a. assign a, z; Select a pattern a ("z", _"z + x"_)

2. Full Pattern Matching

a. assign a; Select a pattern a (“y", "z + i")

b. assign a; Select a pattern a ("y", "x + z")

3. Wildcard

a. assign a;Select a pattern a (_,  _"z "_)
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If and While Pattern

Clauses

Some examples but not limited to:

1. if ifs; variable v; Select ifs pattern ifs (v, _, _)

2. if ifs; stmt s; Select s pattern ifs ("z", _ , _)

3. while w; stmt s; Select s pattern w ( "x" , _ )

4. while w; variable v; Select v pattern w (v, _)

Multi clauses Combination of such that and pattern clause:

1. Follows/* and Pattern clauses

2. Parent/* and  Pattern clauses

3. Modifies Pattern clauses

4. Uses and Pattern clauses

Figure 5.11: QPS and PKB Integration Test Plan

5.2.3  Integration Test Statistics

The figure below shows the line coverage (%)  of integration tests across code folders.

Figure 5.12: Integration Tests Line Coverage

Integration testing efforts were consistent across the Models, PKB, PQL, Source_Processor

and Utils folders. Each of these folders had at least 70% of line coverage. As the API calls

between SPA subcomponents were the main focus of integration tests, not all lines of code

are covered in integration tests. Hence, the line coverage for integration tests is lower than

that for unit tests.

5.3 System Testing
Unit and integration testing ensures that the internal components of the SPA behave as

intended. However, there might be a potential mismatch between the specified external and

internal behavior of the SPA. Thus, it is necessary to test the SPA against external

specifications through system testing.
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5.3.1 System Testing Approach

Since end-users of the SPA place a large emphasis on functional correctness (as reflected by

how the SPA is graded primarily on program correctness), a rational test strategy would be

to cover all parameter permutations of possible queries. However, such an approach will

result in too large of a system test set. As such, system testing is done by choosing pairwise

combinations of parameters to attain a reasonable test coverage.

5.3.2 System Test Design

The system test cases are designed using a top-down approach to test in a structured and

organized manner. Firstly, test objectives are defined. Then, pairwise combinations of query

arguments are considered to fulfill the test objectives. Based on the test objective and

combinations of query inputs, an appropriate source program is decided upon to construct

to test the query inputs. Lastly, the output of the source program will be determined based

on the query inputs.

For example, the table below illustrates the utilization of a top-down approach to plan for

the Parent Suite test cases.

1. Test Objective 2. Parameter Permutations 3. Sample Clause Combinations (Pairwise)

Test that

possible

permutations of

Parent

parameters

return correct

result

stmt s, s1, s2;

while w;

if ifs;

constant c;

assign a;

Parent(<synonym>,

<synonym>)

Parent(s1, s2), Parent(a, s), Parent(w, w)

Parent(<synonym>, _ ) Parent(ifs, _), Parent(c, _), Parent(a, _)

Parent(<synonym>,

<INTEGER>)

Parent(s, 4), Parent(w, 5), Parent(ifs, 6)

Parent( _ , <synonym>) Parent(_, a), Parent(_, c), Parent(_, s)

Parent(_, _) Parent(_, _)

Parent( _ , <INTEGER>) Parent(_, 3), Parent(_, 4)

Parent(<INTEGER>, _ ) Parent(2, _), Parent(_, 3)

Parent(<INTEGER>,

<synonym>)

Parent(3, s), Parent(4, w), Parent(5, ifs)

Parent(<INTEGER>,

<INTEGER>)

Parent(3,2), Parent(3, 3), Parent(3,4)

Figure 5.13: Parent Suite Top-Down Approach Illustration
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The clause combinations are then pairwise combined with the Select synonym to generate

query combinations. From there, specific query combinations are shortlisted for testing

based on three major considerations.

Firstly, query combinations that have non-trivial resultant queries are shortlisted so that the

test output is meaningful. For example, the query “stmt s1, s2; Select s1 such that Parent(s1,

s2)” is non-trivial because it selects statements s1 that are parents of statement s2.

However, the query “constant c; stmt s1, s2; Select c such that Parent(s1, s2)” is trivial

because Parent(s1, s2) returns a boolean value which either returns all or no constants. As

such, the second query example does not provide any valuable insights into the workings of

the Parent relationship.

Secondly, queries belonging to different equivalence partitions from non-trivial queries are

shortlisted. Queries belonging to different equivalence partitions are likely to be processed

by the SPA in different manners. By selecting queries from different equivalence partitions,

test effectiveness is improved. However, in cases where it is uncertain if two particular

non-trivial queries belong to the same equivalence partition, both queries are shortlisted for

comprehensive test coverage.

Lastly, test cases which handle boundary values of equivalence partitions for parameter

permutations such as Parent(<INTEGER>, <INTEGER>) are added. This is because bugs often

result from incorrect handling of equivalence partition boundaries.

5.3.3 System Test Organization

The system tests are organized into test collections and test suites. A test collection consists

of multiple test suites. Each test suite has a source and query file. For example, the Iteration

1 test collection contains the Parent test suite. The Parent test suite has a source text file

and a queries text file that specifically tests the Parent relationship behaviour.

5.3.4 System Test Sample

Here, two sample test cases for the SIMPLE source code and PQL query are provided to

illustrate test plan entries.

SIMPLE Source Code

Test Suite-No Test Objective Input(Autotester Format) Expected Output Pass/Fail

Source-01 Test that valid

source

program can

be parsed to

generate

Uses/Modifies

/Pattern

Single Assignment

procedure sourceSuite {

z = ( ( 1% ( 2) % a

/ ( b -C ) +3 /d ) )

% 4+E /5* F -

( g + 6 + 7 - 8 ) * (

1

(The value 1 is

returned by SPA

when query is

parsed and

evaluated)

Pass
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abstractions ( h) ) + 9 + i % 10

%   ( 1 )  ;

}

1 - Source-01

stmt s;

Select s

1

5000

Source-02 Test that valid

source

program can

be parsed to

generate

Follows(*)/

Parent(*)

abstractions

Single If-Else

procedure sourceSuite {

if((1 > a)&&( ( 2 - 3 +

( ( B ) ) ) + ( 4 ) >

5))then {c = 3;} else { c =

4;}

}

2 - Source-02

stmt s;

Select s

1, 2, 3

5000

1, 2, 3

(The values 1, 2

and 3 are

returned by SPA

when query is

parsed and

evaluated)

Pass

Figure 5.14: Source Suite Sample Tests

PQL Query

Test Suite-No Test Objective Input (Autotester Format) Expected Output Pass/Fail

Parent-02 Test that

possible

permutations

of Parent

parameters

return correct

result

Permutation -

Parent(

<synonym>,

<synonym>)

2 - Parent-02

stmt s1, s2;

Select s1 such that

Parent(s2, s1)

4, 5, 6, 7

5000

4, 5, 6, 7 Pass
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Parent-45 Test that

possible

permutations of

Parent

parameters

return correct

result

Permutation -

Parent(

<INTEGER>,

<synonym>)

45 - Parent-45

if ifs;

Select ifs such that

Parent(3, ifs)

5

5000

5 Pass

procedure parentSuite {

1.  var1 = 1;

2.  var2 = 2;

3.  while (var1 != 1) {

4. var3 = 3;

5. if (var2 != 2) then {

6. var4 = var2;

}

else {

7. var4 = var2;

}

}

}

Figure 5.15: Parent Suite Sample Tests

5.3.5 System Test Statistics

The two figures below show the breakdown of tests across test suites.
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Figure 5.16: Iteration 1 Test Cases Breakdown

Figure 5.17: Iteration 2 Test Cases Breakdown

Figure 5.18: Iteration 3 Test Cases Breakdown

The Iteration 1 test collection has 10 test suites and has 561 test cases. The Iteration 2 test

collection has 11 test suites and 546 test cases. The Iteration 3 test collection has 4 test

suites and 542 test cases. In iteration 3, 119 boolean tests were also added to the Boolean

suite in iteration 2 to account for many complex edge cases.

Test cases are mostly balanced across test suites for a holistic test coverage. Note that suites

indicated with an asterisk (*) consist of two separate test suites. For example, Parent(*)

consists of the Parent and Parent* test suites.

5.4 Load Testing
To attain an even more comprehensive test coverage, load tests were conducted on SPA.

While the primary focus of systematic testing is to ensure external functional behavior

correctness, the focus of load testing is to ensure that external non-functional requirements

on system performance are fulfilled. Specifically, load testing aims to provide guarantees on

the ability of our SPA to handle specified program loads.
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5.4.1 Load Test Design

Since the SPA is graded primarily on program correctness, a rational strategy for load testing

will be to ensure that the program does not crash unexpectedly when the SPA is evaluating

significant program loads. Load requirements for test cases are identified based on the

CS3203 SPA Correctness Grading Specifications. The grading specifications are as follows:

● Maximum number of lines of source program code (Iteration 3 evaluation) - 500 lines

● Maximum number of queries (Iteration 1-3 evaluation) - 500 lines

● Query answers must be returned within 5000ms

● Maximum size for INTEGER - Within reasonable assumptions

● Maximum length of NAME - Within reasonable assumptions

● Maximum level of nesting in source program - Within reasonable assumption.

From there, load requirements are identified from the grading specifications.

Program Load Requirements:

● SPA should be able to parse 1000 lines of a single text file source program code (no

nesting)

● SPA should be able to parse a source program code with the maximum number of

nesting allowed by 500 lines of code

● SPA should return answers must be returned within 5000ms

● Source program should be able to handle INTEGER with a maximum size of

2,147,483,647 (Typical maximum positive value for 32-bit signed binary integer in

computing)

● Source program should be able to handle NAME with a maximum length of 50

characters (Typical string length is around 20)

5.4.2 Load Test Objectives

Based on the above load requirements, the following test objectives to fulfill are defined:

Test Suite Test Objective Input Pass/Fail

Assignment Test that SPA is able to

parse 100/500/1000

lines of assignment

statements in source

program

Clear condition -

Parsing time <=

3/5/10 seconds

100/500/1000 lines of assignment

statements in Source program + 1

statement query

Statement query:

stmt s;

Select s

Pass

Nested Test that SPA is able to

parse a source

100/500 layers of nested Source

program + 1 statement query

Pass
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program with 100/500

layers of nesting

Clear condition -

Parsing time <=  5/70

seconds

Statement query:

stmt s;

Select s

Figure 5.19: Load Test Samples

5.5 Stress Testing
In Iteration 3, stress testing was conducted to identify speed bottlenecks for optimization.

Stress testing was used in conjunction with optimization heuristics designed by the team.

Assuming that certain optimization heuristics improved SPA speed efficiency, stress testing

was used as a proof of concept to validate the improvement in bottleneck performance.

5.5.1 Stress Test Design

The following suite below is defined for stress testing. The team created a complicated

source program of approximately 600 lines and added computationally heavy clauses such

as Affects(*), Follows(*) and Next(*) to push the SPA to beyond the point of failure. The

metric for failure was the time limit of 5000 milliseconds. The figure below shows the stress

test suite design.

Test Suite Test Objective Input Result (Windows OS)

Stress Test the maximum

number of clauses that

can be handled by the

SPA from Affects(*),

Calls(*), Follows(*) and

Next(*)

Clear condition - Each

query executes within

5000ms

Approximately 600

lines of complicated

Source program +

multi-clause queries

of various query

lengths. Clauses

used include

Affects(*), Calls(*),

Follows(*), and

Next(*) clauses.

SPA is able to handle:

1. At most two

computationally heavy

clauses when

selecting BOOLEANs,

2. At most one

computationally heavy

clause tuple selection

queries

3. At most two

computationally heavy

clause when selecting

single synonyms

Figure 5.20: Stress Test Design

5.5.2 Stress Test Samples

The figure below shows sample inputs in the stress test suite.

Test Suite-No Query Result
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(Windows OS)

Stress-13 stmt s1, s2; Select BOOLEAN such that Affects*(s1, s2)

and Next*(s1, s2)

Pass

Stress-14 stmt s1, s2; Select BOOLEAN such that Affects*(s1, s2)

and Next*(s1, s2) and Follows*(s1, s2)

Timeout

Stress-25 stmt s1, s2; Select <s1, s2> such that Affects*(s1, s2) Pass

Stress-27 stmt s1, s2; Select <s1, s2> such that Affects*(s1, s2)

and Next*(s1, s2)

Timeout

Stress-32 stmt s1, s2; Select s1 such that Affects*(s1, s2) and

Next*(s1, s2)

Pass

Stress-33 stmt s1, s2; Select s1 such that Affects*(s1, s2) and

Next*(s1, s2) and Follows*(s1, s2)

Timeout

Figure 5.21: Stress Suite Sample Tests

5.5.3 Stress Test Results

Next(*) clause evaluation and boolean selection optimizations were made post-stress

testing, improving boolean and single synonym selection speed efficiency.

However, assuming a fixed number of clauses, clauses involving tuple selection were slower

relative to its boolean or single synonym selection counterparts as cross product had to be

performed for tuple selection. Hence, it was observed from the stress test results that the

SPA could handle lesser computationally heavy clause queries with respect to tuple

selections.

Through the joint usage of optimization heuristics and stress testing for optimization

validation, the team managed to improve the bottleneck performance of the SPA to two

computationally heavy clause queries on average on the Windows Operating System.

5.6 Test Strategy
In this section, various test strategies adopted for SPA testing will be discussed. This includes

the defect management lifecycle, automation techniques, and planning of testing activities.

5.6.1 Defect Management Lifecycle

The defect management lifecycle is an integral aspect of quality assurance which provides a

framework in identifying, troubleshooting, and ensuring proper closure of defects found
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during testing. For the project, a simplified defect management lifecycle with five defect

states is adopted. This is sufficient for managing defects in a six-member team. Bugs are

resolved within 40 hours of identification. The diagram below shows the happy path of our

defect management workflow.

Figure 5.22: Defect Management Workflow Happy Path

The first state of the lifecycle is the New state where bugs are identified in the SPA. Upon

identification, the team member handling Quality Assurance (QA) will notify the rest of the

team.

In the Assigned State, the bug is diagnosed upon further investigations. A Github Issue is

created and assigned to the relevant team member in charge of the component causing the

bug. The assignee of the issue has to resolve the bug within 24 hours.

Upon bug resolution, QA will retest within 12 hours in the Retest state before verifying that

the bug has been successfully resolved in the Verified/Closed state.

5.6.2 Automation Techniques

Apart from adopting a defect management workflow for proper defect closure, Python

scripts were used for system and load test automation to reduce manual work.

Automated Query Generation

For system testing, a script (query_generator.py) was used to generate autotester readable

test queries written in the system test plan. Incremental serial numbers associated with the

test queries were dynamically generated by the test script. This allowed for easier test set

extension as new test cases can be slotted into an existing test suite easily without

reordering serial numbers allocated to each test case.

Automated Local System Test Runs

In addition, a script (test_runner.py) was written to pull a built autotester from the build

folder, run all test suites, and automatically validate XMLs generated for test failures.

Automated Remote System Test Runs

System tests are introduced into continuous integration on GitHub for automated execution

of system tests upon code pushes. This is done by running test_runner.py remotely.

test_runner.py pulls the autotester.exe from the build folder, runs test cases in the test

folder, and validates XML output for any test failures. The figure below shows a successful

88



remote test run. The last line of code in the figure, line 6310, indicates successful XML

validation as the test run reported: “All Iteration 1 xml passed”.

Figure 5.23: System Tests Continuous Integration

Automated Source Program Generation

For load testing, the generation of complex SIMPLE source programs was also automated

using the script source_generator.py. source_generator.py is a script which recursively

generates syntactically valid source programs. The figure below showcases the complexity of

a source program used for load testing.
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Figure 5.24: Complex Source Program (Load Testing)

5.6.3 Test Plan - Iteration 1

The Gantt chart below illustrates actual testing activities for SPA Iteration 1.

Figure 5.25: Test Plan Gantt Chart (Iteration 1)

Unit testing was conducted across all sprints in Iteration 1 to ensure that modular units in

the code base functioned as intended. This is crucial because higher-level classes are

dependent on lower-level modular units.

On the other hand, integration testing was started early in the iteration as it is harder to

locate test failure causes as the code base becomes larger.
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Defect management lifecycle was planned and discussed among team members early in the

development cycle to familiarize everyone with proper defect closure.

Unfortunately, system and load testing were delayed as the team was occupied with basic

SPA implementation in Iteration 1. Delaying system testing was a costly mistake as major

refactors had to be done to the codebase. This will be further elaborated in reflection

section 7.2.2.

5.6.4 Test Plan - Iteration 2

The Gantt chart below illustrates actual testing activities for SPA Iteration 2.

Figure 5.26: Test Plan Gantt Chart (Iteration 2)

A learning point from Iteration 1 was to avoid system testing delays as it caused major

refactors to the codebase. Thus, the team started conducting system tests early in the

iteration. This arrangement worked well as developers were informed of important edge

cases early in the iteration by the tester. As such, developers were able to thoroughly

consider design and implementation details before beginning on implementation. This

prevented major code refactors to the codebase.

On the other hand, integration testing began in Week 8 as the team was in the process of

implementing the remaining subset of basic SPA during Recess Week and Week 7.

A potential improvement will be to pay more attention to non-functional testing in Iteration

3. This is because SPA efficiency is graded in Iteration 3. Yet, non-functional testing was not

conducted in Iteration 2. As such, the team will be ramping up non-functional testing efforts

to improve SPA speed and reduce memory usage in Iteration 3.

5.6.5 Test Plan - Iteration 3

The Gantt chart below illustrates actual testing activities for SPA Iteration 3.
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Figure 5.27: Test Plan Gantt Chart (Iteration 3)

In Iteration 3, system testing was completed in Week 10. Load tests were refined and stress

tests were added in Week 11 to improve non-functional testing efforts. Stress tests included

Next(*) and Affects(*) to ensure that the SPA could handle non-precomputed load, since

precomputation of the above mentioned clauses were not allowed.

In Week 12, a reactive testing technique called exploratory testing was adopted. Exploratory

testing was suitable as the tester already has prior experience working on the SPA system

tests. Exploratory testing was done by running queries found in CS3203 Assignment 1 and

Assignment 2 and diagnosing test failures. After test failures were diagnosed, new test cases

were devised on-the-fly based on the tester’s intuition to detect bugs. This technique

allowed the team to quickly identify edge case bugs leading up to the Iteration 3 submission.
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Part 2 – Project management

6 Project Management
6.1 Management Tools and Workflow
This section describes the management tools and workflows that the team uses to manage

the SPA project.

6.1.1 Weekly Sprints

Weekly sprint meetings are held on Sunday mornings. The meeting begins with a

retrospective meeting where issues progress for the current sprint is reviewed. Following

which, issues for the next sprint are identified and estimated time commitments are made

for the sprint goals. Time is also set aside to discuss implementation details.

6.1.2 GitHub Issues

Tasks are created and tracked using GitHub Issues.

Figure 6.1: Team26 GitHub Issues
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An issue is created when a new task arises. Tasks can be coding-related, such as SPA

implementation and bug fixes, or non-coding related, such as discussion of implementation

design.

Tasks are further categorized with the following tags:

1. G: General

2. KIV: Keep in view

3. PKB: Program Knowledge Base

4. PQL: Query Processor

5. SP: Source Processor

6. T: Testing

Tags allow for greater issue visibility by segmenting tasks into predefined categories.

Each issue is assigned to a team member to emphasize on task ownership.

6.1.3 GitHub Projects

GitHub Projects is used in conjunction with GitHub issues as a visualization tool to optimize

workflow. The project board provides the team with a high level overview on the progress of

each member and of the current sprint.

Figure 6.2: Team26 GitHub Project Management Board

The board is split into mainly 4 sections: Todo, In Progress, Ready for Review, Done Issues

that are to be done in the current sprint are added to the Todo section. If a component is

currently being worked on, it will be moved to the In Progress section. Once implementation

is completed, the task is moved to the Ready for Review section. The task is moved into the

Done section when all reviews are done and the code is merged. Each team member is in

charge of managing their own tasks on the board.
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6.1.4 Github Actions for Continuous Integration

The team uses GitHub actions for Continuous Integration (CI), automating code integrations

from multiple contributors into a single branch.

CI consists of two workflows:

1. Build project

2. Style check

Both of these workflows run upon any branch pushes or pull requests.

Build project builds the project and runs unit, integration and system tests. Build or test

failures will lead to a rejection by GitHub. Upon failure, merging of the pull request is not

allowed.

The style check workflow uses cpplint, a static code style checker for C++ to ensure

consistent code style. It uses Google C++ code conventions. Ensuring consistent style

improves the readability of the code base, allowing for ease of future modifications.

Figure 6.3: GitHub CI All Checks Pass

Figure 6.4: Team26 GitHub CI One Check Fail

6.2 Project Plan
In this section, Gantt charts will be used as a visual aid to show tasks distribution and

schedule among team members.
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6.2.1 Iteration 1 Project Plan

The Gantt chart below showcases major activities accomplished in Iteration 1 on a weekly

basis.

Figure 6.5: Project Plan Gantt Chart (Iteration 1)

As the focus of Iteration 1 is to build the SPA ground-up, emphasis was placed on research,

design and concurrent implementation of components between Weeks 3 and 5.

System and load testing was done between Weeks 4 and 6 as team members were occupied

with SPA implementation in the earlier weeks. For Iterations 2 and 3, the team will delegate

a member to specifically focus on QA. The implementation of system tests will start early in

the Iteration to prevent major code refactors, a costly mistake made in Iteration 1 which is

elaborated under Reflection section 7.2.2

6.2.2 Iteration 2 Project Plan

The Gantt chart below showcases major activities accomplished in Iteration 2 on a weekly

basis.
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Figure 6.6: Project Plan Gantt Chart (Iteration 2)

As most deadlines could be met on time with the Iteration 1 plan, the team followed a

similar plan for Iteration 2.

The focus for the first half of Iteration 2 was on completing basic SPA implementation and

beginning on advanced SPA implementation. Similar to Iteration 1, integration tests were

carried out immediately once individual components were ready for integration. The main

difference between Iterations 1 and 2 is that consistent system testing was conducted

throughout Iteration 2.

By following the above plan, requirements for Advanced SPA are fully implemented apart

from Affects(*), and attribute tuple selection, which will be implemented in Iteration 3.

6.2.3 Iteration 3 Project Plan

The Gantt chart below showcases major activities accomplished in Iteration 3 on a weekly

basis.
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Figure 6.7: Project Plan Gantt Chart (Iteration 3)

In Iteration 3, the focus for PKB and PQL was to implement the remaining advanced SPA

requirements of Affects(*), tuple support for attribute projection, and further optimization

of algorithms used.

On the other hand, system testing focused on Affects(*) and multiclause queries suite

implementation. Specifically, two multiclause suites were implemented. The first multiclause

suite was implemented to test multiclause boolean selection while the second multiclause

suite was implemented to test multiclause synonym selection. Both multiclause suites

included Affects(*) clauses to test the newly implemented Affects(*) rigorously.

In summary, as a result of consistent project planning from Iteration 1 to 3, the team was

able to complete both basic and advanced SPA requirements and perform rigorous testing

on time.
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Part 3 – Conclusion

7 Reflection
This section provides reflections on some of the insights that were gleaned from working on

the project. For each iteration, two effective practices that were adopted by the team and

two areas that could be improved upon are elaborated.

7.1 Effective Practices - Iteration 1

7.1.1 Consistent Clarifications

Throughout Iteration 1, whenever an ambiguity arose from project specification, our team

sought immediate clarification with our teaching assistant and Professors on Microsoft

Teams.

For example, although it was stated in the CS3203 Project Wiki FAQ that reasonable

assumptions can be made regarding maximum size for INTEGER, we were unsure of what

basis these assumptions can be made under. As such, we clarified on Microsoft Teams if we

could use the value 2,147,483,647, the maximum positive value for 32-bit signed binary

integer in computing as a reasonable assumption.

Adopting a mindset of making consistent clarification saved us a lot of time from potential

code changes, which could have arisen if we had assumed and wrongly interpreted the

project requirements.

7.1.2 Weekly Timetables

In addition, apart from utilizing Github as a platform to manage our project, the team made

an effort to draft weekly timetables where we indicated which days of the week we will be

working on our task.

For example, the timetable below shows each team member’s assigned task for Week 7

Sprint.

Date PKB PQL T

28/02/2022 Implement Next(*)

Suite [Jun Long]

03/03/2022 Next/Calls/Pattern APIs

Implementation

[Jun Wei]

04/03/2022 Integrate with

Next/Calls/Pattern API

[Si Ting]
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Refactor Query Evaluator

[Si Ting]

05/03/2022 CFG Insert Methods

Implementation

[Rui Xuan]

Implement Full Expression

+ Next/Calls Support

[Ming Lim]

Implement Query

Optimizer [Jia Dong]

06/03/2022 Integrate Query Evaluator

with Query Optimizer [Si

Ting]

Implement

Affects(*) Suite

[Jun Long]

Code Demonstration (07/03/2022)

Figure 7.1: Weekly Timetable

This kept everyone accountable for their assigned tasks. As such, we were able to meet most

deadlines that we set.

7.2 Potential Improvements - Iteration 1

7.2.1 Insufficient Component Design Planning

While designing the various components of SPA, we did not come up with a detailed plan of

what was to be implemented. As such, we had to refactor a component, the Query

Evaluator, halfway through Iteration 1.

The design and implementation details of the Query Evaluator were only briefly mentioned.

We only agreed that the Query Evaluator was to store Query Nodes, and would traverse

through them to evaluate the PQL query. Other details such as the data structure used, the

specific implementation of the nodes (polymorphism), and the traversal of the nodes were

not finalized.

This caused implementation problems as there was a mismatch between the expected and

actual PKB APIs that were designed and called. Consequently, our project schedule got

delayed as we had to refactor the Query Evaluator and PKB APIs.

For subsequent iterations, we will come up with a concrete plan of the design before

working on implementation. This can be done by sketching out UML diagrams to

communicate the design details. We will also use Google Docs to finalize implementation

details in writing. For Iteration 2, this will apply to the design of the Query Optimizer, update

of the Query Evaluator, Calls/* data structure, and CFG.
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7.2.2 Delay of System Testing

Due to tight time constraints with basic SPA implementation, we only appointed a member

to focus solely on QA in Week 5. As a result, we did not have the aid of system test cases to

consider possible edge cases thoroughly while implementing components.

This issue surfaced in the interaction between the PQL and PKB components. Edge cases

such as wildcards, passing raw variables such as Uses(s, “x”) were neglected. To solve this

issue, we had to assign wildcards a special numeric value for each ‘stmtRef’ and ‘entRef’

variant and create new PKB APIs to accept raw variable strings as parameters. This

eventually led to more difficulty in debugging, which led to another refactor. We would have

noticed these edge cases if we had begun writing system test cases early in the iteration.

For Iterations 2 and 3, we will prioritize the development of system tests. Our teammate

responsible for QA will inform the respective component teams of important edge cases that

need to be considered.

7.3 Effective Practices - Iteration 2

7.3.1 Thorough Design and Planning of SPA Components

In Iteration 2, we made an effort to thoroughly plan out the design of all SPA components

before working on the code implementation. This plan was done for the CFG and evaluation

of with-node clauses. We wrote the details of these designs on word documents and shared

them with all team members on the cloud.

In the design of the CFG for example, the API details and graph traversal algorithms were

finalized before implementation began. As a result, most edge cases were covered on the

first implementation attempt. Although some minor bugs still surfaced, there was no need

to perform an entire refactor of the code.

This practice also allowed those who were responsible for the components affected to be on

the same page with respect to implementation details. For example, in the design document

of with-node clauses, information such as edge cases, evaluation strategy, and parsing were

written. This allowed those who were in charge of the PKB Extractor Facade, Query

PreProcessor, and Query Node components to have easy reference to the APIs and data

structures that were used. As such, there were no implementation delays due to

miscommunication.

We will continue with this practice in Iteration 3, especially for the final stages of

optimization as well as the querying of Affects and Affects* clauses.

7.3.2 Early Start of System Tests Implementation

As mentioned in section 7.2.2, the implementation of system tests was delayed in Iteration

1. At the start of Iteration 2, we assigned a team member to be in charge of system tests and

began implementation. This helped us in discovering edge cases such as wildcards in if/while

pattern queries. For example, in “if ifs; Select ifs pattern ifs(_, _, _)”, statement numbers of

conditionals without any variables should not be returned. Another edge case discovered

101



was having ‘BOOLEAN’ as synonyms. For example, in “stmt BOOLEAN; Select BOOLEAN”, all

statement numbers should be returned instead of TRUE/FALSE.

As such, unlike in Iteration 1, there were no major refactors that had to be done to account

for these edge cases. The team member handling QA notified everyone of these edge cases

whenever they were discovered. Thus, everyone was able to account for these edge cases

while implementing their components. For Iteration 3, we would continue with this practice

of implementing system tests early.

7.4 Potential Improvements - Iteration 2

7.4.1 Delay of System Testing CI

System tests were not integrated into GitHub CI upon Iteration 1 completion. As a result,

some refactoring work performed in Iteration 2 caused some bugs to surface towards the

deadline for Demo 2 in Week 8. As such, we wrote a Python script to integrate the system

tests into our GitHub CI.

Regression testing is important, and we should continuously update the CI to include the

most updated batch of system tests. Right before the demo for Iteration 2, we updated the

GitHub CI to include system tests. This way, we also ensure that any modifications made to

the code in Iteration 3 will not create more bugs.

7.4.2 Neglect of Complete Basic SPA Requirements

We neglected the update of Uses and Modifies relationships for call statements in Iteration

2. This occurred because call statements were not completely implemented during Iteration

1 and we did not notice this discrepancy. It was only brought to our attention when

additional system tests were written that coincidentally included call statement queries for

Uses and Modifies. Although the fix was fairly straightforward, it is important to prevent this

from happening in the future.

At the start of Iteration 3, our team will set aside time to go through the requirements for

Advanced SPA again. We will create GitHub issues for requirement cases not implemented so

that we can pay attention to them on our GitHub project board. Potential requirements that

we may miss out on are Affects corner cases, and selection of tuples with attribute names.

7.5 Effective Practices - Iteration 3

7.5.1 Efficient Optimization Workflow

We adopted an efficient workflow to optimize SPA. As recommended by the teaching team,

we first tried to identify bottlenecks in our system, before proceeding to implement the

optimizations. To identify bottlenecks within the system, our logger was used to print out

timings of each critical phase of query evaluation, such as retrieving information from the

PKB, combination of results, etc. Group members using Visual Studio could also use its

debugging tools to identify these bottlenecks. Afterwhich, we identified the cause of these

bottlenecks and proceeded with the actual optimization.
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For example, when conducting load tests, we realized that queries containing two connected

clauses with at least one wild card were timing out. One such query was “Select BOOLEAN

such that Next*(s1, _) and Affects*(300, s1)”. Upon further investigation, we found out that

the equi-join of query result tables was taking a long time, because there were many

duplicated entries in “Next*(s1, _)”. We proceeded to eliminate these duplicates before

performing the equi-joins and reduced the time taken for such queries.

7.5.2 Investing Effort into CI Implementation

We made a significant effort in implementing GitHub CI to run regression tests, linting and to

check for any build warnings. For example, system tests for iteration 2 were immediately

mounted onto our CI right after its submission. These helped to eliminate many potential

bugs when implementing new features. The automation of linting and checking of build

warnings also maintained code quality and reduced build issues across different

development OS platforms. Furthermore, manual labour in running system tests, checking

and resolving code quality issues were reduced.

7.6 Potential Improvements - Iteration 3

7.6.1 Insufficient Unit Testing

Our unit tests were not extensive enough to cover all edge cases within SPA. These caused

bugs to surface toward the end of iteration 3. This issue occurred mainly in the Query

PreProcessor, when distinguishing between semantic and syntactic errors of synonyms. Edge

cases we did not cover in our unit tests were duplicated synonyms and undeclared

synonyms. As such, these bugs only surfaced while conducting exploratory tests and were

fixed thereafter.

This lack of coverage in our unit tests occurred as a result of not having a full understanding

of Select BOOLEAN clauses. Such clauses should return false when a semantic error is

detected and nothing when a syntax error is detected. We neglected this edge case as we

focused more on the code coverage metric when writing unit tests. It is thus important that

all specified requirements of the system need to be considered when writing unit tests as

well.

7.6.2 Not Writing Optimal Code

Code that was not optimal was written in the previous implementation. These optimizations

were obvious and could have been implemented right at the start. As such, this incurred

more effort in the optimization of SPA. There were more areas of the code to identify for

optimization and more optimization code had to be written as well.

For example, in the evaluation of BOOLEAN PQL queries, cross products are never required

between disconnected groups of nodes. This is because cross products never yield an empty

result and we do not need the specific statement numbers, variable or procedure names to

project on. We just need to simply check if the result is empty and output true or false.

However, when implementing this BOOLEAN evaluation, cross product was included which

caused stress tests to fail as we conducted optimization of SPA. More time was spent
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determining where to optimize consequently. We could have kept optimization in mind as

we were designing the strategy for BOOLEAN evaluations and ensure that our algorithm

does not incur unnecessary overhead.
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Appendix

8 Extension Proposal
This section proposes a new feature to be extended in the SPA.

8.1 Extension Definition
“if pattern” queries will be extended to search for statements that are in the ‘then’ or ‘else’

blocks of if statements.

The PQL ‘if’ grammar rule will be modified to:

if : syn-if '(' entRef ',' stmtRef ',' stmtRef ')'

Similar to the definition in advanced SPA, entRef would still refer to the control variable in

the if statement. The stmtRef in the middle refers to statements that appear only as a direct

child in the ‘then’ block of the if statement. The stmtRef on the right side refers to

statements that appear only as a direct child in the ‘else’ block of the if statement.

Specifically, both of these statement references, stmtRef, have to satisfy Parent(ifs, stmtRef).

Examples of these queries, along with their evaluated results will be shown in the following:

Statement Number SIMPLE Source Program

- procedure printMultipleOfSix {

1 read x;

2 if (x % 2 == 0) then {

3 read y;

4 while (y % 3 != 0) {

5 read y; } }

- else {

6 y = 6; }

7 z = x * y;

8 print z; }

Figure 8.1: Sample Extension SIMPLE Program

With reference to the SIMPLE program displayed in Figure 8.1, the following queries will

have the results:
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stmt s; variable v; if ifs; read r;

Query Results

Select ifs pattern ifs (v, 3, 6) 2

Select BOOLEAN pattern ifs (_, 5, s) FALSE

Select s pattern ifs (“x”, r, _) 1, 2, 3, 4, 5, 6, 7, 8

Select <s, ifs> pattern ifs (“x”, _, s)

such that Modifies (s, “y”)

6 2

Figure 8.2: Sample Extension “if pattern” Queries

8.2 Changes Required
This subsection details the changes required for each component in SPA.

8.2.1 SP

No changes are required for the SP. The current implementation of SP already parses and

inserts statements within if statements into the PKB, according to its occurrence in the ‘then’

or ‘else’ block.

8.2.2 PKB

The PKB Extractor Facade will need to extend its pre-existing Pattern API to take in four

instead of two arguments. The four arguments should include (in order):

● if synonym,

● control variable synonym,

● then block statement reference,

● else block statement reference

A struct may be used to aggregate these arguments together. The following is an example of

one such API:

PKB Extractor Facade API

QUERY_RESULT_TABLE Pattern(IF_NODE_ARGS args)

Returns a query result table for “if pattern” queries, based on the arguments listed in args.

The actual extraction algorithm will be elaborated on in section 8.3.
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8.2.3 QPS

The Query PreProcessor will need to extend its parsing to take in four arguments for “if

pattern” clauses. Specifically, its ParsePattern method needs to be extended to parse these 4

arguments.

The EntTable component also needs to be updated to allow construction and validation of

four arguments. It should only allow synonyms and statement numbers as input in the

second and third argument. String identifiers or entity references are syntactically incorrect

and an error will be thrown if they are detected.

The Query Optimizer will also need to update its optimization algorithm.“if pattern”s will

now take a longer time for queries, as four arguments need to be processed. Hence, the

optimization algorithm can be tweaked to deprioritize “if pattern” clauses toward the end of

query evaluations.

Finally, the “if pattern” Query Node will need to be extended as well to take in four

arguments for “if pattern” clauses. The relevant APIs provided by the PKB Extractor Facade

would then need to be integrated. No change is required for the Query Evaluator.

8.3 Implementation Details
The PKB Extractor Facade would need to search for if statements that satisfy the arguments

in the “if pattern” clause. The algorithm would first fetch all if statements from the

Statement Table. It would then iterate through these if statements and perform the checks

shown in the following activity diagram:

Figure 8.3: Extended “if pattern” Clause Check
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The if statement number will only be added to the results if the workflow in the activity

diagram returns true.

Additionally, to optimize the search for statement reference, note that the then and else

block statement numbers are stored as vectors in sorted ascending order. Hence, if the

statement reference were a statement number, binary search can be used. If it were a

statement synonym, the list of statement numbers have to be iterated through.

8.4 Possible Challenges
There are no foreseeable implementation difficulties as most of the information for “if

pattern” clauses are already stored in the PKB. Only logic for parsing, validation and

extraction of the “if pattern” clauses is required. However, the coordination of the

implementation needs to be managed. The new PKB Extractor Facade API should first be

implemented, as it does not depend on any other components. Then, the “if pattern” Query

Node will need to be updated, followed by the Query PreProcessor. The Query Optimizer

may be updated last, as the order of evaluation of nodes only affects the speed of queries,

not its correctness.

With regards to testing, current unit tests and integration tests will be augmented. More test

cases pertaining to this “if pattern” extension must be added as well. Using pairwise testing,

the following combinations need to be implemented:

entRef arg stmtRef arg stmtRef arg

variable reference stmt statement reference stmt statement reference

raw variable reference if statement reference if statement reference

- statement number statement number

Figure 8.4: Extended “if pattern” test cases

A total of at least 2*3*3 = 18 additional test cases will thus need to be implemented. Note

that no modifications to pre-existing “if pattern” clauses are required. This is because

wildcards are still syntactically and semantically valid in this extension.

Additionally, more test cases need to be added to the multi-clause system test suite. This is

because the “if pattern” clause may take in multiple synonyms, which may affect the joining

of results with other clauses. To ensure that all edge cases are covered, system tests should

be written first, before the actual implementation of the functional code.

8.5 Benefits to SPA
With this extension, users of SPA would be able to search for if statements or statements

that are directly nested within if statements. This is beneficial because if-else branches are

two separate execution paths that may hold different logic. With reference to the program in
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Figure 8.1 for example, suppose that variable “y” is erroneously assigned a value other than

6 in statement 6, which causes the program to print out numbers that are not multiples of 6.

The user can just enter this PQL query to search for the cause of error:

stmt s; if ifs;

Select s pattern ifs (_, _, s) such that Modifies(s, “y”)

The user would then be able to view all statements that modify variable “y” in the else

block. Without this pattern clause, the user could still query for a Parent relation, but he

would have to search through these results to determine if it belongs in the then or else

block.

Furthermore, by limiting these queries to only the direct child statement numbers, the user

would not need to search for nested statements in the results. However, the search for

nested statements can still be achieved. Consider the program in Figure 8.1. To retrieve the

statement number 5, this PQL query can be used:

stmt s1, s2; if ifs;

Select s2 pattern ifs (_, s1, _) such that Parent*(s1, s2)
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